精英家教网 > 高中数学 > 题目详情
函数f(x)=
1-x
+lg(3x-1)的定义域是
 
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:由f(x)的解析式有意义,列出不等式组,求出x的取值范围即可.
解答: 解:∵f(x)=
1-x
+lg(3x-1),
1-x≥0
3x-1>0

解得
1
3
<x≤1;
∴f(x)的定义域是(
1
3
,1].
故答案为:(
1
3
,1].
点评:本题考查了求函数的定义域问题,求函数的定义域时,通常使函数的解析式有意义,从而列出不等式(组),求出解集即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,半径为1的圆O,∠AOB=∠BOC=∠COA=
3
,点A0,B0,C0分别是半径OA、OB、CO上的动点,且OA0=OB0=OC0,分别过A0,B0,C0作半径OA、OB、CO的垂线,交圆O与A1,A2,B1,B2,C1,C2,过A2,B1分别作OA、OB的平行线A2M和B1M交于点M,过B2,C1分别作OB、OC的平行线B2N和C1N交于点N,过C2,A1分别作OC、OA的平行线C2P和A1P交于点P,由A1A2MB1B2NC1C2P围成图所示的平面区域(阴影部分),记它的面积为y,设∠A2OA=θ,用y=f(θ)表示y关于θ的函数.
(1)设θ∈(0,
π
3
],求y=f(θ)的解析式;
(2)在(1)的条件下,求y=f(θ)的最大值,并求出当函数取最大值是时tan2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:x-
3
y+1=0,一个圆的圆心C在x轴正半轴上,且该圆与直线l和y轴均相切.
(1)求该圆的方程;
(2)若直线:mx+y+
1
2
m=0与圆C交于A,B两点,且|AB|=
3
,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三个命题:
①△DBC是等边三角形;  
②AC⊥BD;  
③三棱锥D-ABC的体积是
2
6

④AB与CD所成的角是60°.
其中正确命题的序号是
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线f(x)=x3在x=n(n∈N*)处的切线与x轴的交点横坐标为an,则数列{
1
anan+1
}的前8项和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若线段x+y=1(-1≤x≤1)与椭圆
x2
3
+
y2
2
=k(k>0)没有交点,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的伪代码中,若输入的a,b,c依次是1,2,3,则输出的c的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x2-8|,若a≤b≤0,且f(a)=f(b),则a+b的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有如图所示的程序,运行该程序,要使输出的结果是30,在横线处应添加i的条件是
 

查看答案和解析>>

同步练习册答案