精英家教网 > 高中数学 > 题目详情
1.计算:log381+log2$\frac{1}{8}$+${3}^{1+lo{g}_{3}6}$-10lg3=16.

分析 直接利用对数的运算法则求解即可.

解答 解:log381+log2$\frac{1}{8}$+${3}^{1+lo{g}_{3}6}$-10lg3=4-3+3×6-3=16.
故答案为:16.

点评 本题考查对数的运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,统计结果如下:
API[0,50](50,100](100,150](150,200](200,250](250,300]>300
空气质量轻微污染轻度污染中度污染中度重污染重度污染
天数413183091115
(1)若某企业每天由空气污染造成的经济损失S(单位:元)与空气质量指数API(记为ω)的关系式为:
S=$\left\{\begin{array}{l}0,0≤ω≤100\\ 4ω-400,100<ω≤300\\ 2000,ω>300.\end{array}\right.$试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过600元的概率;
(2)若以上表统计的频率作为概率,求该城市某三天中恰有一天空气质量为轻度污染的概率.(假定这三天中空气质量互不影响)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)已知2x+2-x=a(常数),求8x+8-x的值;
(2)若a,b是方程x2-6x+4=0的两根,且a>b,求$\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足an+1=2an2,a1=2.
(1)证明:数列{1+log2an}为等比数列并求通项公式;
(2)证明:$\frac{1}{1+lo{g}_{2}{a}_{1}}$+$\frac{1}{1+lo{g}_{2}{a}_{2}}$+…$+\frac{1}{1+lo{g}_{2}{a}_{n}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A、B是抛物线y2=8x上两点,且此抛物线的焦点在线段AB上,若A,B两点横坐标之和为10,则|AB|为14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.作出函数f(x)=|x-2|-|x+1|的图象,并由图象求出f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)、g(x)的定义域都是R,且f(x)≥0的解集为{x|1≤x<2},g(x)≥0的解集为∅,则不等式f(x)•g(x)>0的解集为{x|x<1或x≥2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.用分数指数幂表示下列各式(式中字母均为正数);
(1)$\sqrt{{a}^{6}{b}^{5}}$;
(2)$\root{3}{{m}^{2}}$;
(3)$\sqrt{(m-n)^{3}}$(m>n);
(4)$\sqrt{a}•\root{3}{a}$;
(5)$\sqrt{a\sqrt{a\sqrt{a}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{9}=1$,一组平行直线的斜率是$\frac{3}{2}$.
(1)这组直线何时与椭圆相交?
(2)当它们与椭圆相交时,证明这些直线被椭圆截得的线段的中点在一条直线上.

查看答案和解析>>

同步练习册答案