精英家教网 > 高中数学 > 题目详情
已知向量m=(cos
B
2
1
2
)与向量n=(
1
2
cos
B
2
)共线,其中A、B、C是△ABC的内角.
(1)求角B的大小;
(2)求2sin2A+cos(C-A)的取值范围.
分析:(1)先根据向量的共线可得到cos
B
2
cos
B
2
=
1
4
,进而可得到cos
B
2
1
2
,再由B是△ABC的内角确定B的范围从而可确定
B
2
的范围得到cos
B
2
的值,最后得到B的值.
(2)由(1)知A+C=
π
3
从而可得到C=
π
3
-A
,然后代入到2sin2A+cos(C-A)中运用两角和与差的公式进行化简得到2sin2A+cos(C-A)=1+sin(2A-
π
6
)
,再结合A的范围可得到2sin2A+cos(C-A)的取值范围.
解答:解:(1)∵
m
=(cos
B
2
1
2
)与
n
=(
1
2
cos
B
2
)共线,
cos
B
2
cos
B
2
=
1
4

cos
B
2
1
2

又0<B<π,
∴0<
B
2
π
2
cos
B
2
=
1
2

B
2
=
π
3
,即B=
3


(2)由(1)知A+C=
π
3

C=
π
3
-A

∴2sin2A+cos(C-A)=2sin2A+cos(
π
3
-2A)
=1-cos2A+
1
2
cos2A+
3
2
sin2A
=1+sin(2A-
π
6
)

∵0<A<
π
3

-
π
6
2A-
π
6
π
2

sin(2A-
π
6
)
∈(-
1
2
,1).
1+sin(2A-
π
6
)
∈(
1
2
,2),
即2sin2A+cos(C-A)的取值范围是(
1
2
,2).
点评:本题主要考查二倍角公式和向量的共线问题.考查基础知识的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(cosθ,sinθ)和
n
=(
2
-sinθ,cosθ),θ∈[π,2π].
(1)求|
m
+
n
|的最大值;
(2)当|
m
+
n
|=
8
2
5
时,求cos(
θ
2
+
π
8
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(cosθ,sinθ)和
n
=(
2
-sinθ,cosθ),θ∈(π,2π)且|
m
+
n
|=
8
2
5
,则cos(
θ
2
+
π
8
)
=
-
4
5
-
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
.
m
=(cosωx,sinωx),
.
n
=(cosωx,2
3
cosωx-sinωx),ω>0,函数f(x)=
.
m
.
n
+|
.
m
|,且函数f(x)图象的相邻两条对称轴之间的距离为
π
2

(1)作出函数y=f(x)-1在[0,π]上的图象
(2)在△ABC中,a,b,c分别是角A,B,C的对边,f(A)=2,c=2,S△ABC=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳二模)已知向量
m
=(cosωx,sinωx),
n
=(cosωx,2
3
cosωx-sinωx)(x∈R,ω>0)函数f(x)=|
m
|+
m
n
且最小正周期为π,
(1)求函数,f(x)的最大值,并写出相应的x的取值集合;
(2)在△ABC中角A,B,C所对的边分别为a,b,c且f(B)=2,c=3,S△ABC=6
3
,求b的值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省豫东、豫北十所名校高三测试理科数学试卷(解析版) 题型:解答题

在△ABC中,角A,B,C的对边分别为a,b,c,已知向量m=(cos A,cos B),n=(2c+b,a),且m⊥n.

    (I)求角A的大小;

    (Ⅱ)若a=4,求△ABC面积的最大值.

 

查看答案和解析>>

同步练习册答案