精英家教网 > 高中数学 > 题目详情
11.已知log3(x+y+4)>log3(3x+y-2),若x-y<λ恒成立,则λ的取值范围是(  )
A.(-∞,10]B.(-∞,10)C.(10,+∞)D.[10,+∞)

分析 要使不等式成立,则有$\left\{\begin{array}{l}x+y+4>0\\ 3x+y-2>0\\ x+y+4>3x+y-2\end{array}\right.$,即$\left\{\begin{array}{l}x+y+4>0\\ 3x+y-2>0\\ x<3\end{array}\right.$,设z=x-y,则y=x-z.作出不等式组对应的可行域如图所示的阴影部分(不包括左右边界),通过平移直线(目标函数)利用线性规划的有关知识即可得出.

解答 解:要使不等式成立,则有$\left\{\begin{array}{l}x+y+4>0\\ 3x+y-2>0\\ x+y+4>3x+y-2\end{array}\right.$,即$\left\{\begin{array}{l}x+y+4>0\\ 3x+y-2>0\\ x<3\end{array}\right.$,
设z=x-y,则y=x-z.作出不等式组对应的可行域如图所示的阴影部分(不包括左右边界):
平移直线y=x-z,由图象可知当直线y=x-z经过点B时,直线在y轴上的截距最小,此时z最大,
由$\left\{\begin{array}{l}x+y+4=0\\ x=3\end{array}\right.$,解得$\left\{\begin{array}{l}y=-7\\ x=3\end{array}\right.$,代入z=x-y得z=x-y=3+7=10,
又因为可行域不包括点B,∴z<10,
∴要使x-y<λ恒成立,则λ的取值范围是λ≥10,即[10,+∞).
故选:D.

点评 本题考查了对数函数的单调性、线性规划的有关知识、不等式的性质,考查了数形结合思想方法、计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设所有方程可以写成(x-1)sinα-(y-2)cosα=1(α∈[0,2π])的直线l组成的集合记为L,则下列说法正确的是②③④;
①直线l的倾斜角为α;
②存在定点A,使得对任意l∈L都有点A到直线l的距离为定值;
③存在定圆C,使得对任意l∈L都有直线l与圆C相交;
④任意l1∈L,必存在唯一l2∈L,使得l1∥l2
⑤任意l1∈L,必存在唯一l2∈L,使得l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知2a=3b=6c,k∈Z,不等式$\frac{a+b}{c}$>k恒成立,则整数k的最大值为(  )
A.6B.5C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an},{bn}满足a1=$\frac{1}{2}$,an+bn=1,bn+1=$\frac{{b}_{n}}{1-{a}_{n}^{2}}$(n∈N*),则b2015=$\frac{2015}{2016}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知在等比数列{an}中,a3+a6=6,a6+a9=$\frac{3}{4}$,则a8+a11等于(  )
A.$\frac{3}{4}$B.$\frac{3}{8}$C.$\frac{3}{16}$D.$\frac{3}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.半径为1的球内最大圆柱的体积为(  )
A.$\frac{2\sqrt{6}}{9}$πB.$\frac{\sqrt{3}}{4}$πC.$\frac{2\sqrt{3}}{3}$πD.$\frac{4\sqrt{3}}{9}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知正方体ABCD-A1B1C1D1
(1)点P是BD的中点.求证:C1P∥平面AB1D1
(2)若点Q是BD上的一个动点,C1Q与平面AB1D1 是否平行?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在正项等比数列{an}中,公比q∈(0,1),且a1a5+2a3a5+a2a8=25,2是a3与a5的等比中项,记bn=5-log2an
(1)求数列{bn}的通项公式;
(2)求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知F1,F2分别为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,点P在椭圆上,△POF2是面积为$\sqrt{3}$的正三角形,则椭圆方程为$\frac{{x}^{2}}{4+2\sqrt{3}}$+$\frac{{y}^{2}}{2\sqrt{3}}$=1.

查看答案和解析>>

同步练习册答案