精英家教网 > 高中数学 > 题目详情

已知在区间上是增函数,在区间上是减函数,且
(1)求函数的解析式.
(2)若在区间上恒有,求实数的取值范围.

(1);(2)

解析试题分析:(1)
由已知得:的两根
 即 解得

又由得:

(2)由得:即:

在区间上恒成立,
考点:本题考查了导数的运用
点评:导数本身是个解决问题的工具,是高考必考内容之一,高考往往结合函数甚至是实际问题考查导数的应用,求单调、最值、完成证明等,请注意归纳常规方法和常见注意点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的极值;
(2)当时,求的值域;
(3)设,函数,若对于任意,总存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设a为实数, 函数 
(Ⅰ)求的极值.
(Ⅱ)当a在什么范围内取值时,曲线轴仅有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)已知f(x)=在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求下列函数的导数(本小题满分12分)
(1)        (2)
(3)           (4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
已知函数,设曲线y=在与x轴交点处的切线为y=4x-12,的导函数,且满足
(1)求
(2)设,求函数g(x)在[0,m]上的最大值。
(3)设,若对一切,不等式恒成立,求实数t的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数
(Ⅰ)若,求的单调区间;
(Ⅱ)若当≥0时≥0,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)已知函数
(1)求函数的图像在点处的切线方程;
(2)若,且对任意恒成立,求的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)已知在x=2时有极大值6,在x=1时有极小值.
⑴ 求的值;
⑵ 求在区间上的最大值和最小值.

查看答案和解析>>

同步练习册答案