分析 (1)设各项均不相等的等差数列{an}的公差为d,由等差数列的通项公式和等比数列中项的性质,解方程可得d=2,进而得到所求通项公式;
(2)求得bn=(-1)n•$\frac{4n}{(2n-1)(2n+1)}$=(-1)n•($\frac{1}{2n-1}$+$\frac{1}{2n+1}$),再分n为偶数和奇数,运用裂项相消求和,化简整理即可得到所求和.
解答 解:(1)设各项均不相等的等差数列{an}的公差为d,满足a1=1,
且a1,a2,a5成等比数列,
可得a22=a1a5,即(1+d)2=1+4d,
解得d=2(0舍去),
则an=1+2(n-1)=2n-1(n∈N*);
(2)bn=(-1)n$\frac{{a}_{n}+{a}_{n+1}}{{a}_{n}{a}_{n+1}}$=(-1)n•$\frac{4n}{(2n-1)(2n+1)}$
=(-1)n•($\frac{1}{2n-1}$+$\frac{1}{2n+1}$),
当n为偶数时,前n项和Sn=(-1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+(-$\frac{1}{5}$-$\frac{1}{7}$)+…+($\frac{1}{2n-1}$+$\frac{1}{2n+1}$)
=-1+$\frac{1}{2n+1}$=-$\frac{2n}{2n+1}$;
当n为奇数时,n-1为偶数,前n项和Sn=Sn-1+(-$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=-$\frac{2(n-1)}{2n-1}$+(-$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=-$\frac{2n+2}{2n+1}$.
则Sn=$\left\{\begin{array}{l}{-\frac{2n}{2n+1},n为偶数}\\{-\frac{2n+2}{2n+1},n为奇数}\end{array}\right.$.
点评 本题考查等差数列的通项公式的运用,等比数列中项的性质,考查数列的求和,注意运用分类讨论和裂项相消求和,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | -7 | D. | -11 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | log29 | D. | log27 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{2π}{3}$ | C. | $\frac{4π}{3}$ | D. | $\frac{8π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com