·ÖÎö £¨1£©ÓɵȲîÊýÁеȲîÖÐÏîµÄÐÔÖʼ´¿ÉÇóµÃkµÄÖµ£»
£¨2£©ÓÉan+1=$-\frac{1}{2}$£¨an+an+2£©£¬an+2+an+1=-£¨an+1+an£©£¬an+3+an+2=-£¨an+2+an+1£©=an+1+an£¬·ÖÀ࣬¸ù¾ÝnΪżÊý»òÆæÊýʱ£¬·Ö×飬¼´¿ÉÇóµÃSn£»
£¨3£©·½·¨Ò»£ºÓÉÌâÒâ¸ù¾ÝµÈ±ÈÊýÁеÄÐÔÖÊ£¬·Ö±ðÇóµÃqµÄÖµ£¬ÇóµÃÈÎÒâÏàÁÚÈýÏîµÄ˳Ðò£¬¼´¿ÉÇóµÃkµÄÖµ£¬·½·¨¶þ£º·ÖÀ࣬¸ù¾ÝµÈ²îÊýÁеÄÐÔÖÊ£¬ÇóµÃaµÄÖµ£¬¼´¿ÉÇóµÃkµÄÖµ£®
½â´ð ½â£º£¨1£©¡ß{an}ÊǵȲîÊýÁУ¬Ôò2an+1=an+an+2¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£¬
ÓÖan+1=k£¨an+an+2£©¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£¬
¡àk=$\frac{1}{2}$£®
£¨2£©¡ßan+1=$-\frac{1}{2}$£¨an+an+2£©£¬an+2+an+1=-£¨an+1+an£©£¬
an+3+an+2=-£¨an+2+an+1£©=an+1+an£¬
µ±nÊÇżÊýʱ£¬
Sn=a1+a2+a3+a4+¡+an-1+an=£¨a1+a2£©+£¨a3+a4£©+¡+£¨an-1+an£©=$\frac{n}{2}$£¨a1+a2£©=$\frac{n}{2}$£¨a+1£©£¬
µ±nÊÇÆæÊýʱ£¬
Sn=a1+a2+a3+a4+¡+an-1+an=a1+£¨a2+a3£©+£¨a4+a5£©+¡+£¨an-1+an£©£¬
=a1+$\frac{n-1}{2}$£¨a2+a3£©=a1+$\frac{n-1}{2}$[-£¨a1+a2£©]=1-$\frac{n-1}{2}$£¨a+1£©£¬n=1Ò²ÊʺÏÉÏʽ£®
×ÛÉϿɵã¬Sn=$\left\{\begin{array}{l}{1-\frac{n-1}{2}£¨a+1£©}&{nÎªÆæÊý}\\{\frac{n}{2}£¨a+1£©}&{nΪżÊý}\end{array}\right.$£»
£¨3£©·½·¨Ò»£º¼ÙÉè´æÔÚʵÊýk£¬Ê¹ÊýÁÐ{am}Êǹ«±È²»Îª1µÄµÈ±ÈÊýÁУ¬ÇÒÈÎÒâÏàÁÚÈýÏîam£¬am+1£¬am+2°´Ä³Ë³ÐòÅÅÁкó³ÉµÈ²îÊýÁУ®am£¬am+1£¬am+2·Ö±ð±íʾΪ£ºam£¬amq£¬${a}_{m}{q}^{2}$£®
Ö»¿¼ÂÇ£º1£¬q£¬q2£¨q¡Ù1£©µÄÈýÖÖÅÅÁм´¿É£º
1£¬q£¬q2£»1£¬q2£¬q£»q2£¬1£¬q£®¿ÉµÃ2q=1+q2£¬2q2=1+q£»2=q2+q£®
·Ö±ð½âµÃq=1£»q=1»ò-$\frac{1}{2}$£»q=1»òq=-2£®
¡àÖ»ÓÐq=-2Âú×ãÌõ¼þ£®¡àÏàÁÚÈýÏîam£¬am+1£¬am+2·Ö±ðΪ£ºam£¬-2am£¬4am£®
¡à-2am=k£¨am+4am£©£®½âµÃk=-$\frac{2}{5}$£®
·½·¨¶þ£ºÉèÊýÁÐ{am}ÊǵȱÈÊýÁУ¬ÔòËüµÄ¹«±Èq=$\frac{{a}_{2}}{{a}_{1}}$=a£¬Ôòam=am-1£¬am+1=am£¬am+2=am+1£¬¡6·Ö ¢ÙÈôam+1ΪµÈ²îÖÐÏÔò2am+1=am+am+2£¬¼´2am=am-1+am+1£¬½âµÃ£ºa=1£¬²»ºÏÌâÒ⣻
¢ÚÈôamΪµÈ²îÖÐÏÔò2am=am+1+am+2£¬¼´2am-1=am+am+1£¬»¯¼òµÃ£ºa2+a-2=0£¬
½âµÃ£ºa=-2»òa=1£¨Éᣩ£»k=$\frac{{a}_{m+1}}{{a}_{m}+{a}_{m+2}}$=$\frac{{a}^{m}}{{a}^{m-1}+{a}^{m+1}}$=$\frac{a}{1+{a}^{2}}$=-$\frac{2}{5}$£»
¢ÛÈôam+2ΪµÈ²îÖÐÏ2am+2=am+am+1£¬¼´2am+1=am-1+am£¬»¯¼òµÃ£º2a2-a-1=0£¬
½âµÃa=-$\frac{1}{2}$£»k=$\frac{{a}_{m+1}}{{a}_{m}+{a}_{m+2}}$=$\frac{{a}^{m}}{{a}^{m-1}+{a}^{m+1}}$=$\frac{a}{1+{a}^{2}}$=-$\frac{2}{5}$£»
×ÛÉϿɵã¬Âú×ãÒªÇóµÄʵÊýkÓÐÇÒ½öÓÐÒ»¸ö£¬k=-$\frac{2}{5}$£®
µãÆÀ ±¾Ì⿼²éÁËÊýÁеÝÍÆ¹ØÏµ¡¢µÈ±ÈÊýÁеÄͨÏʽ¡¢¡°ÁÑÏîÇóºÍ¡±·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 3 | B£® | 4 | C£® | 5 | D£® | 6 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{3}{5}$ | B£® | -$\frac{3}{5}$ | C£® | -$\frac{4}{5}$ | D£® | $\frac{4}{5}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{2¦Ð}{3}$ | B£® | $\frac{¦Ð}{3}$ | C£® | $\frac{¦Ð}{2}$ | D£® | $\frac{¦Ð}{6}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{{\sqrt{2}}}{2}$ | B£® | $\frac{{\sqrt{5}}}{2}$ | C£® | $\frac{{\sqrt{3}}}{2}$ | D£® | $\sqrt{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
| x | 30 | 40 | 50 | 60 |
| y | 25 | 30 | 40 | 45 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 0 | B£® | 3 | C£® | 6 | D£® | 8 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{12}{5}$ | B£® | -$\frac{12}{5}$ | C£® | $\frac{5}{12}$ | D£® | -$\frac{5}{12}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com