1£®ÒÑÖªÊýÁÐ{an}ÖУ¬ÒÑÖªa1=1£¬a2=a£¬an+1=k£¨an+an+2£©¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£¬ÊýÁÐ{an}µÄǰnÏîºÍΪSn£®
£¨1£©Èô{an}ÊǵȲîÊýÁУ¬ÇókµÄÖµ£»
£¨2£©Èôa=1£¬k=-$\frac{1}{2}$£¬ÇóSn£»
£¨3£©ÊÇ·ñ´æÔÚʵÊýk£¬Ê¹ÊýÁÐ{am}Êǹ«±È²»Îª1µÄµÈ±ÈÊýÁУ¬ÇÒÈÎÒâÏàÁÚÈýÏîam£¬am+1£¬am+2°´Ä³Ë³ÐòÅÅÁкó³ÉµÈ²îÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓÐkµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓɵȲîÊýÁеȲîÖÐÏîµÄÐÔÖʼ´¿ÉÇóµÃkµÄÖµ£»
£¨2£©ÓÉan+1=$-\frac{1}{2}$£¨an+an+2£©£¬an+2+an+1=-£¨an+1+an£©£¬an+3+an+2=-£¨an+2+an+1£©=an+1+an£¬·ÖÀ࣬¸ù¾ÝnΪżÊý»òÆæÊýʱ£¬·Ö×飬¼´¿ÉÇóµÃSn£»
£¨3£©·½·¨Ò»£ºÓÉÌâÒâ¸ù¾ÝµÈ±ÈÊýÁеÄÐÔÖÊ£¬·Ö±ðÇóµÃqµÄÖµ£¬ÇóµÃÈÎÒâÏàÁÚÈýÏîµÄ˳Ðò£¬¼´¿ÉÇóµÃkµÄÖµ£¬·½·¨¶þ£º·ÖÀ࣬¸ù¾ÝµÈ²îÊýÁеÄÐÔÖÊ£¬ÇóµÃaµÄÖµ£¬¼´¿ÉÇóµÃkµÄÖµ£®

½â´ð ½â£º£¨1£©¡ß{an}ÊǵȲîÊýÁУ¬Ôò2an+1=an+an+2¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£¬
ÓÖan+1=k£¨an+an+2£©¶ÔÈÎÒân¡ÊN*¶¼³ÉÁ¢£¬
¡àk=$\frac{1}{2}$£®
£¨2£©¡ßan+1=$-\frac{1}{2}$£¨an+an+2£©£¬an+2+an+1=-£¨an+1+an£©£¬
an+3+an+2=-£¨an+2+an+1£©=an+1+an£¬
µ±nÊÇżÊýʱ£¬
Sn=a1+a2+a3+a4+¡­+an-1+an=£¨a1+a2£©+£¨a3+a4£©+¡­+£¨an-1+an£©=$\frac{n}{2}$£¨a1+a2£©=$\frac{n}{2}$£¨a+1£©£¬
µ±nÊÇÆæÊýʱ£¬
Sn=a1+a2+a3+a4+¡­+an-1+an=a1+£¨a2+a3£©+£¨a4+a5£©+¡­+£¨an-1+an£©£¬
=a1+$\frac{n-1}{2}$£¨a2+a3£©=a1+$\frac{n-1}{2}$[-£¨a1+a2£©]=1-$\frac{n-1}{2}$£¨a+1£©£¬n=1Ò²ÊʺÏÉÏʽ£®
×ÛÉϿɵã¬Sn=$\left\{\begin{array}{l}{1-\frac{n-1}{2}£¨a+1£©}&{nÎªÆæÊý}\\{\frac{n}{2}£¨a+1£©}&{nΪżÊý}\end{array}\right.$£»
£¨3£©·½·¨Ò»£º¼ÙÉè´æÔÚʵÊýk£¬Ê¹ÊýÁÐ{am}Êǹ«±È²»Îª1µÄµÈ±ÈÊýÁУ¬ÇÒÈÎÒâÏàÁÚÈýÏîam£¬am+1£¬am+2°´Ä³Ë³ÐòÅÅÁкó³ÉµÈ²îÊýÁУ®am£¬am+1£¬am+2·Ö±ð±íʾΪ£ºam£¬amq£¬${a}_{m}{q}^{2}$£®
Ö»¿¼ÂÇ£º1£¬q£¬q2£¨q¡Ù1£©µÄÈýÖÖÅÅÁм´¿É£º
1£¬q£¬q2£»1£¬q2£¬q£»q2£¬1£¬q£®¿ÉµÃ2q=1+q2£¬2q2=1+q£»2=q2+q£®
·Ö±ð½âµÃq=1£»q=1»ò-$\frac{1}{2}$£»q=1»òq=-2£®
¡àÖ»ÓÐq=-2Âú×ãÌõ¼þ£®¡àÏàÁÚÈýÏîam£¬am+1£¬am+2·Ö±ðΪ£ºam£¬-2am£¬4am£®
¡à-2am=k£¨am+4am£©£®½âµÃk=-$\frac{2}{5}$£®
·½·¨¶þ£ºÉèÊýÁÐ{am}ÊǵȱÈÊýÁУ¬ÔòËüµÄ¹«±Èq=$\frac{{a}_{2}}{{a}_{1}}$=a£¬Ôòam=am-1£¬am+1=am£¬am+2=am+1£¬¡­6·Ö ¢ÙÈôam+1ΪµÈ²îÖÐÏÔò2am+1=am+am+2£¬¼´2am=am-1+am+1£¬½âµÃ£ºa=1£¬²»ºÏÌâÒ⣻
¢ÚÈôamΪµÈ²îÖÐÏÔò2am=am+1+am+2£¬¼´2am-1=am+am+1£¬»¯¼òµÃ£ºa2+a-2=0£¬
½âµÃ£ºa=-2»òa=1£¨Éᣩ£»k=$\frac{{a}_{m+1}}{{a}_{m}+{a}_{m+2}}$=$\frac{{a}^{m}}{{a}^{m-1}+{a}^{m+1}}$=$\frac{a}{1+{a}^{2}}$=-$\frac{2}{5}$£»
¢ÛÈôam+2ΪµÈ²îÖÐÏ2am+2=am+am+1£¬¼´2am+1=am-1+am£¬»¯¼òµÃ£º2a2-a-1=0£¬
½âµÃa=-$\frac{1}{2}$£»k=$\frac{{a}_{m+1}}{{a}_{m}+{a}_{m+2}}$=$\frac{{a}^{m}}{{a}^{m-1}+{a}^{m+1}}$=$\frac{a}{1+{a}^{2}}$=-$\frac{2}{5}$£»
×ÛÉϿɵã¬Âú×ãÒªÇóµÄʵÊýkÓÐÇÒ½öÓÐÒ»¸ö£¬k=-$\frac{2}{5}$£®

µãÆÀ ±¾Ì⿼²éÁËÊýÁеÝÍÆ¹ØÏµ¡¢µÈ±ÈÊýÁеÄͨÏʽ¡¢¡°ÁÑÏîÇóºÍ¡±·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªÊýÁÐ{an}µÄͨÏʽan=4n-20£¬ÔòÈçͼËã·¨µÄÊä³ö½á¹ûÊÇ£¨¡¡¡¡£©
A£®3B£®4C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªx¡Ê£¨$\frac{¦Ð}{2}$£¬¦Ð£©£¬tanx=-$\frac{4}{3}$£¬Ôòcos£¨-x-$\frac{¦Ð}{2}$£©µÈÓÚ£¨¡¡¡¡£©
A£®$\frac{3}{5}$B£®-$\frac{3}{5}$C£®-$\frac{4}{5}$D£®$\frac{4}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®½«º¯Êýf£¨x£©=2$\sqrt{3}$cos2x-2sinxcosx-$\sqrt{3}$µÄͼÏóÏò×óÆ½ÒÆt£¨t£¾0£©¸öµ¥Î»£¬ËùµÃͼÏó¶ÔÓ¦µÄº¯ÊýÎªÆæº¯Êý£¬ÔòtµÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\frac{2¦Ð}{3}$B£®$\frac{¦Ð}{3}$C£®$\frac{¦Ð}{2}$D£®$\frac{¦Ð}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖª¸÷Ïî¾ù²»ÏàµÈµÄµÈ²îÊýÁÐ{an}Âú×ãa1=1£¬ÇÒa1£¬a2£¬a5³ÉµÈ±ÈÊýÁУ®
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©Èôbn=£¨-1£©n$\frac{{a}_{n}+{a}_{n+1}}{{a}_{n}{a}_{n+1}}$£¨n¡ÊN*£©£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Ä³ÈýÀâ×¶µÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸ÃÈýÀâ×¶µÄ¸÷¸ö²àÃæÖÐ×î´óµÄ²àÃæµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{2}}}{2}$B£®$\frac{{\sqrt{5}}}{2}$C£®$\frac{{\sqrt{3}}}{2}$D£®$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Ä³³§ÔÚÉú²úij²úÆ·µÄ¹ý³ÌÖУ¬²úÁ¿x£¨¶Ö£©ÓëÉú²úÄܺÄy£¨¶Ö£©µÄ¶ÔÓ¦Êý¾ÝÈç±íËùʾ£®¸ù¾Ý×îС¶þ³Ë·¨ÇóµÃ»Ø¹éÖ±Ïß·½³ÌΪ$\widehat{y}$=0.7x+a£®µ±²úÁ¿Îª80¶Öʱ£¬Ô¤¼ÆÐèÒªÉú²úÄܺÄΪ59.5¶Ö£®
x30405060
y25304045

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬Êä³öµÄxֵΪ£¨¡¡¡¡£©
A£®0B£®3C£®6D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªsin¦Á=-$\frac{12}{13}$£¬ÇÒ¦ÁÊǵÚÈýÏóÏ޵Ľǣ¬Ôòtan¦ÁµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{12}{5}$B£®-$\frac{12}{5}$C£®$\frac{5}{12}$D£®-$\frac{5}{12}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸