| A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
分析 由tanx求出sinx的值,再利用诱导公式求出cos(-x-$\frac{π}{2}$)的值.
解答 解:∵tanx=$\frac{sinx}{cosx}$=-$\frac{4}{3}$,
∴cosx=-$\frac{3}{4}$sinx,
∴sin2x+cos2x=sin2x+$\frac{9}{16}$sin2x=$\frac{25}{16}$sin2x=1,
∴sin2x=$\frac{16}{25}$;
又x∈($\frac{π}{2}$,π),
∴sinx=$\frac{4}{5}$,
∴cos(-x-$\frac{π}{2}$)=cos($\frac{π}{2}$+x)=-sinx=-$\frac{4}{5}$.
故选:C.
点评 本题考查了同角的三角函数关系与诱导公式的应用问题,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | [-1,$\frac{\sqrt{2}}{2}$] | B. | [$\frac{\sqrt{2}}{2}$,1] | C. | [-$\frac{\sqrt{2}}{2}$,1] | D. | [-1,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | -7 | D. | -11 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{10}}{2}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | 1 | D. | $\frac{5}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com