精英家教网 > 高中数学 > 题目详情
某工厂修建一个长方体无盖储水池,其容积为1800立方米,深度为3米,池底每平方米的造价为150元,池壁每平方米的造价为120元,设池底长方形的长为x米.
(1)求底面积,并用含x的表达式表示池壁面积;
(2)怎样设计水池能使总造价最低?最低造价是多少?
考点:基本不等式在最值问题中的应用
专题:应用题,不等式的解法及应用
分析:(1)分析题意,本小题是一个建立函数模型的问题,可设水池的底面积为S1,池壁面积为S2,由题中所给的关系,将此两者用池底长方形长x表示出来.
(2)此小题是一个花费最小的问题,依题意,建立起总造价的函数解析式,由解析式的结构发现,此函数的最小值可用基本不等式求最值,从而由等号成立的条件求出池底边长度,得出最佳设计方案.
解答: 解:(1)设水池的底面积为S1,池壁面积为S2,则有S1=600(平方米),
可知,池底长方形宽为
600
x
米,则S2=6(x+
600
x
)(平方米),
(2)设总造价为y,则y=600×150+6(x+
600
x
)×120=90000+14400
6

当且仅当x=
600
x
,即x=10
6
时取等号,
所以x=10
6
时,总造价最低为90000+14400
6
元.
点评:本题考查函数模型的选择与应用,解题的关键是建立起符合条件的函数模型,故分析清楚问题的逻辑联系是解决问题的重点,此类问题的求解的一般步骤是:建立函数模型,进行函数计算,得出结果,再将结果反馈到实际问题中指导解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x,y满足的条件
x-y≤0
x+y-1≥0
x-2y+2≥0
若z=x+3y+m的最小值为4,则m=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)的最小值1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[3a,a+1]上不单调,求实数a的取值范围;
(3)在区间[-1,3]上,y=f(x)的图象恒在y=2x+2m+1的图象上方.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数y=f(x)的图象经过点(2,
2
2
),则f(4)的值为(  )
A、16
B、2
C、
1
2
D、
1
16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin2x+cos2x,若f(x-φ)为偶函数,则φ的一个值为(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

下面各组函数中为相同函数的是(  )
A、f(x)=
(x-1)2
,g(x)=x-1
B、f(x)=
(x-1)2
,g(x)=
x2-1
x-1
C、f(x)=lnex,g(x)=elnx
D、f(x)=x0,g(x)=
1
x0

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
21-x,x≤1
1-log2x,x>1
,则f[f(4)]=(  )
A、2B、4C、8D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,若
S4
S2
=4,则
S8
S4
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若a是R中的元素,但不是Q中的元素,则a可以是 (  )
A、3.14
B、log48
C、-5
D、
9
2
3

查看答案和解析>>

同步练习册答案