精英家教网 > 高中数学 > 题目详情
选作题,本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.(几何证明选讲)
如图,已知两圆交于A、B两点,过点A、B的直线分别与两圆交于P、Q和M、N.求证:PM∥QN.
B.(矩阵与变换)
已知矩阵A的逆矩阵A-1=
10
02
,求矩阵A.
C.(极坐标与参数方程)
在平面直角坐标系xOy中,过椭圆
x2
12
+
y2
4
=1
在第一象限处的一点P(x,y)分别作x轴、y轴的两条垂线,垂足分别为M、N,求矩形PMON周长最大值时点P的坐标.
D.(不等式选讲)
已知关于x的不等式|x-a|+1-x>0的解集为R,求实数a的取值范围.
分析:A:先连接AB,利用圆的性质易得∠ABN和∠APM相等,及∠ABN和∠AQN互补,从而得到∠APM+∠AQN=π,再结合点P,A,Q三点共线,即得.
B:根据已知条件,求出矩阵M,由M•M-1=E,列出关于矩陈M中参数的方程组即可求得M.
C:先设
x=2
3
cosα
y=2sinα
(α为参数),将矩形PMON周长表示成参数的三角函数的形式,利用三角函数的有啥界性即可求出矩形PMON周长取最大值;
D.对x分情况进行讨论:若x-1<0,则a∈R;若x-1≥0,即(a-1)[(a+1)-2x]>0对任意的x∈[1,+∞)恒成立,列出关于a的不等关系即可求出实数a的取值范围.
解答:解:A.连接AB,易得∠ABN=∠APM,∠ABN+∠AQN=π,
所以∠APM+∠AQN=π,
又点P,A,Q三点共线,
故PM∥QN.
B.设A=
ab
cd
,则由AA-1=E得
ab
cd
10
02
=
10
01

解得
a=1
b=0
c=0
d=
1
2
所以A=
10
0
1
2


C.设
x=2
3
cosα
y=2sinα
(α为参数),
则矩形PMON周长的一半为:2
3
cosα+2sinα=4sin(α+
π
3
)

所以,当α=
π
6
时,矩形PMON周长取最大值4×2=8,
此时,点P(3,1).
D.证明:若x-1<0,则a∈R;
若x-1≥0,则(x-a)2>(x-1)2对任意的x∈[1,+∞)恒成立,
即(a-1)[(a+1)-2x]>0对任意的x∈[1,+∞)恒成立,
所以
a-1>0
a+1<2x
a-1<0
a+1>2x
对任意的x∈[1,+∞)恒成立,
解得a<1.
点评:本题主要考查圆的有关知识、逆矩阵、解绝对值不等式、椭圆的参数方程的基本方法,考查运算求解的能力.难度不大,做题要仔细.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选作题,本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.(几何证明选讲)
如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,求BC的长.
B.(矩阵与变换)
已知矩阵
12
2a
的属于特征值b的一个特征向量为
1
1
,求实数a、b的值.
C.(极坐标与参数方程)
在平面直角坐标系xOy中,已知点A(1,-2)在曲线
x=2pt2
y=2pt
(t为参数,p为正常数),求p的值.
D.(不等式选讲)
设a1,a2,a3均为正数,且a1+a2+a3=1,求证:
1
a1
+
1
a2
+
1
a3
≥9

查看答案和解析>>

科目:高中数学 来源:2010年高考试题(江苏版)解析版 题型:解答题

 [选做题]本题包括A、B、C、D四小题,请选定其中两题并在相应的答题区域内作答。若多做,则按作答的前两题评分。解答时应写出文字说明、证明过程或演算步骤。

A. 选修4-1:几何证明选讲

 

AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC。

B. 选修4-2:矩阵与变换

 

在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1)。设k为非零实数,矩阵M=,N=,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,求k的值。

C. 选修4-4:坐标系与参数方程

 

在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值。

 

D. 选修4-5:不等式选讲

 

设a、b是非负实数,求证:

 

[必做题]第22题、第23题,每题10分,共计20分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。

 

 

查看答案和解析>>

科目:高中数学 来源:2012年江苏省南通市教研室高考数学全真模拟试卷(四)(解析版) 题型:解答题

选作题,本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.(几何证明选讲)
如图,已知两圆交于A、B两点,过点A、B的直线分别与两圆交于P、Q和M、N.求证:PM∥QN.
B.(矩阵与变换)
已知矩阵A的逆矩阵A-1=,求矩阵A.
C.(极坐标与参数方程)
在平面直角坐标系xOy中,过椭圆在第一象限处的一点P(x,y)分别作x轴、y轴的两条垂线,垂足分别为M、N,求矩形PMON周长最大值时点P的坐标.
D.(不等式选讲)
已知关于x的不等式|x-a|+1-x>0的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012年江苏省南通市教研室高考数学全真模拟试卷(一)(解析版) 题型:解答题

选作题,本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.(几何证明选讲)
如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,求BC的长.
B.(矩阵与变换)
已知矩阵的属于特征值b的一个特征向量为,求实数a、b的值.
C.(极坐标与参数方程)
在平面直角坐标系xOy中,已知点A(1,-2)在曲线(t为参数,p为正常数),求p的值.
D.(不等式选讲)
设a1,a2,a3均为正数,且a1+a2+a3=1,求证:

查看答案和解析>>

同步练习册答案