【题目】在
中,角A,B,C的对边分别为a,b,c,
,且
.
(1)求A;
(2)求
面积的最大值.
科目:高中数学 来源: 题型:
【题目】某工厂对一批新产品的长度(单位:
)进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )
![]()
A.20,22.5B.22.5,25C.22.5,22.75D.22.75,22.75
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解我市参加2018年全国高中数学联赛的学生考试结果情况,从中选取60名同学将其成绩(百分制,均为正数)分成
六组后,得到部分频率分布直方图(如图),观察图形,回答下列问题:
![]()
(1)求分数在
内的频率,并补全这个频率分布直方图;
(2)根据频率分布直方图,估计本次考试成绩的众数、均值;
(3)根据评奖规则,排名靠前10%的同学可以获奖,请你估计获奖的同学至少需要所少分?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的首项为
,前
项和为
,若对任意的
,均有
(
是常数且
)成立,则称数列
为“
数列”.
(1)若数列
为“
数列”,求数列
的通项公式;
(2)是否存在数列
既是“
数列”,也是“
数列”?若存在,求出符合条件的数列
的通项公式及对应的
的值;若不存在,请说明理由;
(3)若数列
为“
数列”,
,设
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面上有n个点,任意三点不共线,任意两点之间连一条线段,并将每条线段染为红色与蓝色之一,称三边颜色相同的三角形为“同色三角形”.记同色三角形的个数为S.
(1)若
,对于所有可能的染法,求S的最小值;
(2)若
(整数
),对于所有可能的染法,求S的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为F1(-c,0),F2(c,0),直线
交椭圆E于A,B两点,△ABF1的周长为16,△AF1F2的周长为12.
(1)求椭圆E的标准方程与离心率;
(2)若直线l与椭圆E交于C,D两点,且P(2,2)是线段CD的中点,求直线l的一般方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,函数
.
(1)当
时,解不等式
;
(2)若关于
的方程
的解集中恰有一个元素,求
的取值范围;
(3)设
,若对任意
,函数
在区间
上的最大值与最小值的差不超过1,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某观测站
在目标
的南偏西
方向,从
出发有一条南偏东
走向的公路,在
处测得与
相距
的公路
处有一个人正沿着此公路向
走去,走
到达
,此时测得
距离为
,若此人必须在
分钟内从
处到达
处,则此人的最小速度为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义域为R的奇函数,当x<0时,
.
(1)求f(2)的值;
(2)用定义法判断y=f(x)在区间(-∞,0)上的单调性.
(3)求
的解析式
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com