精英家教网 > 高中数学 > 题目详情

如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成直二面角,如图二,在二面角中.

(1)求证:BD⊥AC;

(2)求D、C之间的距离;

(3)求DC与面ABD成的角的正弦值。

 

【答案】

(1)根据线面垂直的性质定理来得到线线垂直的证明。关键的一步是利用面ABD面ABC,得到BD面ABC,加以证明。

(2) 2 (3)

【解析】

试题分析: 解:(1)依题意,面ABD面ABC,AB是交线,

而BDAB,BD面ABC,又AC面ABC,

 BD⊥AC;          4分

(2)由(1)知,BD面ABC,而BC面ABC,

 BD⊥BC;RtDBC中,BC=BA=2,BD=2,

DC===2;       8分

(3)取AB的中点H,连CH、DH和DC,

△ABC是正三角形,

CHAB,又面ABC面ABD,

 CH面ABD,

DH是DC在面ABD内的射影,

CDH是DC与面ABD成的角。

而CH=BC=,由(2)DC=2

sinCDH===即为所求。      12分

考点:空间中点线面的位置关系

点评:解决该试题的关键是熟练的运用判定定理和性质定理得到垂直的证明,以及角的求解,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选考题
请从下列三道题当中任选一题作答,如果多做,则按所做的第一题计分,请在答题卷上注明题号.
22-1设函数f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定义域为R,求实数m的取值范围.
22-2如图,在△ABC中,CD是∠ACB的角平分线,△ACD的外接圆交BC于E,AB=2AC,
(1)求证:BE=2AD;
(2)当AC=1,BC=2时,求AD的长.
22-3已知P为半圆C:
x=cosθ
y=sinθ
(θ为参数,0≤θ≤π)
上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与半圆C上的弧AP的长度均为
π
3

(1)求以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;
(2)求直线AM的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直角△ABC的顶点A、B分别在x轴、y轴的正半轴上移动,直角顶点C与原点O在直线AB的两侧,则顶点C的轨迹是    (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网请考生在第(1),(2),(3)题中任选一题作答,如果多做,则按所做的第一题记分.
(1)选修4-1:几何证明选讲
如图,在△ABC中,D是AC的中点,E是BD的中点,AE的延长线交BC于F.
(Ⅰ)求
BF
FC
的值;
(Ⅱ)若△BEF的面积为S1,四边形CDEF的面积为S2,求S1:S2的值.
(2)选修4-4:坐标系与参数方程
以直角坐标系的原点O为极点,a=
π
6
轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线l经过点P(1,1),倾斜角a=
π
6

( I)写出直线l的参数方程;
( II)设l与圆ρ=2相交于两点A、B,求点P到A、B两点的距离之积.
(3)选修4-5:不等式选讲
已知函数f(x)=|2x+1|+|2x-3|.
(I)求不等式f(x)≤6的解集;
(II)若关于x的不等式f(x)>a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)如图所示,在正三棱柱ABC-A1B1C1中,底面边长和侧棱长都是2,D是侧棱CC1上任意一点,E是A1B1的中点.
(I)求证:A1B1∥平面ABD;
(II)求证:AB⊥CE;
(III)求三棱锥C-ABE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图6所示,在正△ABC中,E、F依次是AB、AC的中点,AD⊥BC,EH⊥BC,FG⊥BC,

D、H、G为垂足.若将正△ABC绕AD旋转一周所得的圆锥体积为V,则其中由阴影部分所产生的旋转体的体积与V的比值为多少?

          图6

查看答案和解析>>

同步练习册答案