精英家教网 > 高中数学 > 题目详情
15.已知等差数列{an}中,Sn为其前n项和,且a4=5,S6=-39.
(1)求{an}的通项公式;
(2)求数列{an}的前n项和Sn的最小值.

分析 (1)利用等差数列的通项公式及其前n项和公式即可得出;
(2)令an=7n-23≤0,解得n,即可得出.

解答 解:(1)设等差数列{an}的首项为a1,公差为d,∵a4=5,S6=-39.
∴$\left\{\begin{array}{l}{{a}_{1}+3d=5}\\{6{a}_{1}+\frac{6×5}{2}d=-39}\end{array}\right.$,解得a1=-16,d=7,
∴an=-16+7(n-1)=7n-23,
(2)令an=7n-23≤0,解得n≤3,
∴当n=3时,数列{an}的前n项和Sn取得最小值S3=$\frac{3×(-16-2)}{2}$=-27.

点评 本题考查了等差数列的通项公式及其前n项和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.当x→0时,下列四个无穷小阶数最高的是(  )
A.e${\;}^{{x}^{4}-{x}^{3}}$-1B.cosx2-1C.$\sqrt{1+{x}^{2}}$-1D.tanx-sinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.从1,2,3,4,5,6这6个数字中,任取2个数字相加,其和为偶数的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设数列{an}的前n项和为Sn,且Sn=$\frac{{a}_{n+1}}{2}$-2n-1,已知a1=t,则下列说法正确的是①
①数列{Sn+2n}是等比数列;
②当t≠-2时,数列{an}的通项公式an=2(t+2)•3n-2-2n-1
③若an+1≤an成立,则t的范围是t≤-$\frac{3}{2}$;
④若an+1≥an,则t的最小值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=ax2+bx-2是定义在[1+a,2]上的偶函数,则f(x)在区间[-1,2]上的值域是(  )
A.[-10,2]B.[-14,-2]C.(-∞,-2]D.[-14,-5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某校运动会开幕式上举行升旗仪式,在坡度为15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10m(如图所示),则旗杆的高度为(  )
A.10 mB.30 mC.10mD.10m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知O为坐标原点,A(0,2),B(4,6),$\overrightarrow{OM}=λ\overrightarrow{OA}+μ\overrightarrow{AB}$.
(1)若λ=2,且$\overrightarrow{OM}⊥\overrightarrow{AB}$,求μ的值;
(2)若对任意实数μ,恒有A,B,M三点共线,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.$\frac{{lg\sqrt{2}+lg3-lg\sqrt{10}}}{lg1.8}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}中,a1=3,a2=6,an+2=an+1-an,则a2015=(  )
A.-6B.6C.-3D.3

查看答案和解析>>

同步练习册答案