精英家教网 > 高中数学 > 题目详情

甲、乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7、8、9、10环,且每次射击成绩互不影响,射击环数的频率分布表如下:

若将频率视为概率,回答下列问题:
(1)求表中x,y,z的值及甲运动员击中10环的概率;
(2)求甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率;
(3)若甲运动员射击2次,乙运动员射击1次,表示这3次射击中击中9环以上(含9环)的次数,求的分布列及

(1)0.35;(2)0.992;(3)2.35,分布列如下:

ξ
0
1
2
3
P
0.01
0.11
0.4
0. 48

解析试题分析:(1)结合频率分布表、频率之和为1的性质和频率的计算公式去求;(2)利用“至少有一次击中9环以上(含9环)”的对立事件是“三次都没有击中9环以上(含9环)”,而且三次射击的事件都是彼此相互独立的,所以“三次都没有击中9环以上(含9环)”的概率是0.23,再用间接法求.(3)先根据独立事件的乘法公式求出随机变量各取值的概率,再写出其分布列和数学期望.
试题解析:(1)由题意可得x=100(10+10+35)=45,y=1(0.1+0.1+0.45)=0.35,
因为乙运动员的射击环数为9时的频率为1(0.1+0.15+0.35)=0.4,所以z=0.4×80=32,
由上可得表中x处填45,y处填0.35,z处填32.                 3分
设“甲运动员击中10环”为事件A,则P(A)=0.35,
即甲运动员击中10环的概率为0.35.                            4分
(2)设甲运动员击中9环为事件A1,击中10环为事件A2,则甲运动员在一次射击中击中9
环以上(含9环)的概率为P(A1+A2)=P(A1)+P(A2)=0.45+0.35=0.8,
故甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率
P=1[1P(A1+A2)]3=10.23=0.992       7分
(3)ζ的可能取值是0,1,2,3,则P(ζ=0)=0.22×0.25=0.01


                            10分
所以ξ的分布列是

ξ
0
1
2
3
P
0.01
0.11
0.4
0. 48
                 12分
考点:1、随机变量概率分布列和数学期望的计算,2、互斥事件的概率,3、相互独立事件的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图所示).已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,求抽取的学生人数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某高校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示,同时规定成绩在85分以上(含85分)的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.
(Ⅰ)求出第4组的频率,并补全频率分布直方图;
(Ⅱ)根据样本频率分布直方图估计样本的中位数;
(Ⅲ)如果用分层抽样的方法从“优秀”和“良好” 的学生中共选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解今年某校高三毕业班准备报考飞行员学生体重情况,将所得的数据整理后,画出了频率分布直方图(如图).已知图中从左到右的前3个小组的频率之比为,其中第二小组的频数为12.

(1)求该校报考飞行员的总人数;
(2)以这所学校的样本来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设表示体重超过60公斤的学生人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某数学老师对本校2013届高三学生某次联考的数学成绩进行分析,按1:50进行分层抽样抽取的20名学生的成绩进行分析,分数用茎叶图记录如下:

得到频率分步表如下:

(1)求表中的值,并估计这次考试全校学生数学成绩及格率(分数在范围为及格);
(2)从大于等于110分的学生中随机选2名学生得分,求2名学生的平均得分大于等于130分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某学校高二年级共有1000名学生,其中男生650人,女生350人,为了调查学生周末的休闲方式,用分层抽样的方法抽查了200名学生.
(1)完成下面的列联表;

 
不喜欢运动
喜欢运动
合计
女生
50
 
 
男生
 
 
 
合计
 
100
200
(2)在喜欢运动的女生中调查她们的运动时间, 发现她们的运动时间介于30分钟到90分钟之间,如图是测量结果的频率分布直方图,若从区间段的所有女生中随机抽取两名女生,求她们的运动时间在同一区间段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在某次综合素质测试中,共设有40个考室,每个考室30名考生.在考试结束后,为调查其测试前的培训辅导情况与测试成绩的相关性,抽取每个考室中座位号为05的考生,统计了他们的成绩,得到如图所示的频率分布直方图.

(Ⅰ)在这个调查采样中,用到的是什么抽样方法?
(Ⅱ)写出这40个考生成绩的众数、中位数(只写结果);
(Ⅲ)若从成绩在的考生中任抽取2人,求成绩在的考生至少有一人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如右图所示.经销商为下一个销售季度购进了130t该农产品.以(单位:t,100≤≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.

(Ⅰ)将T表示为的函数;
(Ⅱ)根据直方图估计利润T不少于57000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在一段时间内,某种商品价格(万元)和需求量之间的一组数据为:

价 格
1.4
1.6
1.8
2
2.2
需求量
12
10
7
5
3
(1)进行相关性检验;
(2)如果之间具有线性相关关系,求出回归直线方程,并预测当价格定为1.9万元,需求量大约是多少?(精确到0.01
参考公式及数据:
相关性检验的临界值表:
n-2
1
2
3
4
5
6
7
8
9
10
小概率0.01
1.000
0.990
0.959
0.917
0.874
0.834
0.798
0.765
0.735
0.708

查看答案和解析>>

同步练习册答案