(本小题满分12分)
某学校高二年级共有1000名学生,其中男生650人,女生350人,为了调查学生周末的休闲方式,用分层抽样的方法抽查了200名学生.
(1)完成下面的列联表;
| 不喜欢运动 | 喜欢运动 | 合计 |
女生 | 50 | | |
男生 | | | |
合计 | | 100 | 200 |
(1)列联表详见解析;(2).
解析试题分析:(1)利用分层抽样填表;(2)利用频率分步直方图求出内的人数和在的人数,列出所有的情况,列出概率.
试题解析:(1)根据分层抽样的定义,知抽取男生130人,女生70人, 1分
3分 不喜欢运动 喜欢运动 合计 女生 50 20 70 男生 50 80 130 合计 100 100 200
(2)由直方图知在内的人数为4人,设为.
在的人数为2人,设为. 5分
从这6人中任选2人有AB,Aa,Ab,Ac,Ad,Ba,Bb,Bc,Bd,ab,ac,ad,bc,bd,cd
共15种情况 7分
若时,有共六种情况. 9分
若时,有一种情况. 10分
事件:“她们在同一区间段”所包含的基本事件个数有种, 11分
故
答:两名女生的运动时间在同一区间段的概率为. 12分
考点:1.分层抽样;2.频率分步直方图.
科目:高中数学 来源: 题型:解答题
某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数据如下表:
(Ⅰ)由表中数据直观分析,节能意识强弱是否与人的年龄有关?
(Ⅱ)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人?
(Ⅲ)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。
(Ⅰ)根据以上数据建立一个2×2列联表;
(Ⅱ)试判断是否有97.5%的把握认为“休闲方式与性别有关”?
下面临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某学生社团在对本校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排共有两种:白天背和晚上睡前背。为了研究背单词时间安排对记忆效果的影响,该社团以5%的比例对这1000名学生按时间安排类型进行分层抽样,并完成一项实验.实验方法是,使两组学生记忆40个无意义音节(如XIQ、GEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆检测。不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验.
两组同学识记停止8小时后的准确回忆(保持)情况如图(区间含左端点而不含右端点).
(1)估计这1000名被调查学生中停止后8小时40个音节的保持率不小于60%的人数;
(2)从乙组准确回忆单词个数在个范围内的学生中随机选2人,求能准确回忆个单词至少有一人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
甲、乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7、8、9、10环,且每次射击成绩互不影响,射击环数的频率分布表如下:
若将频率视为概率,回答下列问题:
(1)求表中x,y,z的值及甲运动员击中10环的概率;
(2)求甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率;
(3)若甲运动员射击2次,乙运动员射击1次,表示这3次射击中击中9环以上(含9环)的次数,求的分布列及
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
下表是某单位在2013年1—5月份用水量(单位:百吨)的一组数据:
月份 | 1 | 2 | 3 | 4 | 5 |
用水量 | 4 5 | 4 | 3 | 2 5 | 1 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
2012年第三季度,国家电网决定对城镇居民民用电计费标准做出调整,并根据用电情况将居民分为三类: 第一类的用电区间在,第二类在,第三类在(单位:千瓦时). 某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示.
⑴ 求该小区居民用电量的中位数与平均数;
⑵ 本月份该小区没有第三类的用电户出现,为鼓励居民节约用电,供电部门决定:对第一类每户奖励20元钱,第二类每户奖励5元钱,求每户居民获得奖励的平均值;
⑶ 利用分层抽样的方法从该小区内选出5户居民代表,若从该5户居民代表中任选两户居民,求这两户居民用电资费属于不同类型的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
PM2. 5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.
某试点城市环保局从该市市区2011年全年每天的PM2.5监测数据中随机的抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)
(1)从这15天的PM2.5日均监测数据中,随机抽出三天,求恰有一天空气质量达到一级的概率;
(2)从这15天的数据中任取三天数据,记表示抽到PM2.5监测数据超标的天数,求的分布列;
(3)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中平均有多少天的空气质量达到一级或二级。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某中学号召本校学生在本学期参加市创办卫生城的相关活动,学校团委对该校学生是否关心创卫活动用简单抽样方法调查了位学生(关心与不关心的各一半),
结果用二维等高条形图表示,如图.
(1)完成列联表,并判断能否有℅的把握认为是否关心创卫活动与性别有关?
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
| 女 | 男 | 合计 |
关心 | | | 500 |
不关心 | | | 500 |
合计 | | 524 | 1000 |
参加活动次数 | 1 | 2 | 3 |
人数 | 10 | 50 | 40 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com