精英家教网 > 高中数学 > 题目详情
如图,在三棱锥S—ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°。

(1)求证:平面MAP⊥平面SAC。
(2)求二面角M—AC—B的平面角的正切值;
(1)详见解析,(2)

试题分析:(1)要证面面垂直,需证线面垂直 观察的证明方向为 由的中点,易得,所以证明方向转为平面,又,所以只需找出,而这由平面可得,(2)求二面角,关键问题在作出二面角的平面角  作二面角的平面角方法主要是找出二面角棱的垂面,而这在题中易得,即平面 异面直线所成角关键找平移,所以过点点,使直线平移到直线在把空间角转化为平面角后,只需找三角形解出即可
试题解析:解(1)因为平面,,又因为
所以,,平面,
又因为的中点
所以,,所以面   5分
(2)因为平面,
所以,从而为二面角的平面角,
因为直线与直线所成的角为
所以过点点,连结
中,由勾股定理得
中,
中,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在正方体中,分别的中点.

(1)求证:
(2)已知是靠近的四等分点,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知三棱锥的侧棱与底面垂直,,, M、N分别是的中点,点P在线段上,且,

(1)证明:无论取何值,总有.
(2)当时,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥,底面为平行四边形,侧面底面.已知为线段的中点.

(Ⅰ)求证:平面
(Ⅱ)求面与面所成二面角大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱中,平面

(Ⅰ)从下列①②③三个条件中选择一个做为的充分条件,并给予证明;
,②;③是平行四边形.
(Ⅱ)设四棱柱的所有棱长都为1,且为锐角,求平面与平面所成锐二面角的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设x,y,z是空间中不同的直线或平面,对下列四种情形:①x,y,z均为直线;②x,y是直线,z是平面;③x,y是平面,z是直线;④x,y,z均为平面.其中使“x∥z且y∥z?x∥y”为真命题的是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是(  )
A.ACSB
B.AB∥平面SCD
C.SA与平面SBD所成的角等于SC与平面SBD所成的角
D.ABSC所成的角等于DCSA所成的角

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体-中,与平面ABCD所成角的余弦值为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果正四棱锥的底面边长为2,侧面积为,则它的侧面与底面所成的(锐)二面角的大小为        .

查看答案和解析>>

同步练习册答案