分析 (1)由CD∥AB,知CD∥平面SAB,由此能证明CD∥EF.
(2)推导出EF⊥平面SAD,由此能求出三棱锥S-DEF的体积.
解答 证明:(1)∵在直角梯形ABCD中CD∥AB,
AB?平面SAB,CD?平面SAB,
∴CD∥平面SAB,![]()
又∵平面CDEF∩平面SAB=EF,
∴CD∥EF.…(6分)
解:(2)∵CD⊥AD,平面SAD⊥平面ABCD,
∴CD⊥平面SAD,∴CD⊥SD,同理AD⊥SD,
由(1)知EF∥CD,∴EF⊥平面SAD,
∵EC=AC,∠ADC=∠EDC=90°,
∴△ADC≌△EDC,∴ED=AD,
在Rt△SDA中,∵AD=1,SD=$\sqrt{3}$,∠SAD=60°,
又∵ED=AD=1,∴E为SA中点,EF=$\frac{1}{2}AB$=$\frac{1}{2}$,
∴△SED的面积为$\frac{\sqrt{3}}{4}$,
∴三棱锥S-DEF的体积V=$\frac{1}{3}×\frac{\sqrt{3}}{4}×\frac{1}{2}=\frac{\sqrt{3}}{24}$.…(12分)
点评 本题考查线线平行的证明,考查三棱锥的体积的求法,是中档题,解题时要 认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2] | B. | [-1,+∞) | C. | (-1,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com