精英家教网 > 高中数学 > 题目详情
已知椭圆中心在原点,焦点在x轴上,短轴端点和焦点围成的四边形是正方形,且椭圆上的点到焦点的最大值为
2
+1.
(1)求椭圆方程;
(2)过左焦点F且不与坐标轴垂直交椭圆于A、B点,线段AB的垂直平分线交x轴于G点,求G点横坐标取值范围.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)由题意可知:b=c,c+a=
2
+1,由此能够求出椭圆的方程.
(2)设直线AB的方程为y=k(x+1)(k≠0),代入
x2
2
+y2=1
,整理得(1+2k2)x2+4k2x+2k2-2=0.由直线AB过椭圆的左焦点F,记A(x1,y1),B(x2,y2),AB的中点N(x0,y0),x1+x2=
-4k2
1+2k2
,x0=
x1+x2
2
,y0=
y1+y2
2
,垂直平分线NG的方程为y-y0=-
1
k
(x-x0),由此能求出点G横坐标的取值范围.
解答: 解:(1)∵短轴端点和焦点围成的四边形是正方形,且椭圆上的点到焦点的最大值为
2
+1,
∴b=c,c+a=
2
+1,
∴b=c=1,a=
2

∴椭圆方程为
x2
2
+y2=1

(2)设直线AB的方程为y=k(x+1)(k≠0),
代入
x2
2
+y2=1
,整理得(1+2k2)x2+4k2x+2k2-2=0.
∵直线AB过椭圆的左焦点F,∴方程有两个不等实根.
记A(x1,y1),B(x2,y2),AB中点N(x0,y0),则x1+x2=
-4k2
1+2k2

x0=
x1+x2
2
,y0=
y1+y2
2

垂直平分线NG的方程为y-y0=-
1
k
(x-x0),
令y=0,得xG=x0+ky0=-
k2
2k2+1
=-
1
2
+
1
4k2+2

∵k≠0,∴-
1
2
<xG<0
∴点G横坐标的取值范围为(-
1
2
,0).
点评:本题主要考查直线与圆锥曲线的综合应用能力,综合性强,是高考的重点,易错点是知识体系不牢固.本题具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2名女生和4名男生外出参加比赛活动.
(1)他们排成一列照相时,若2名女生必须在一起,有多少种排列方法?
(2)他们排成一列照相时,若2名女生不相邻,有多少种排列方法?
(3)从这6名学生中挑选3人担任裁判,至少要有1名女生,则有多少种选法?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC的三个内角∠A、∠B、∠C所对的边,且三角形周长为6,a、b、c成等比数列.
(1)求∠B的取值范围;
(2)求b的取值范围;
(3)求△ABC的面积S的最大值及此时a、b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
2
x2-x+1
,求函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆C经过点A(2,0)和点B(3,1),且圆心C在直线x-y-3=0上,过点P(0,1)且斜率为k的直线与圆C相交于不同的两点.
(1)求圆C的方程,同时求出k的取值范围;
(2)是否存在常数k,使得向量
OM
+
ON
PC
共线?如果存在,求k值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

当x∈[0,
6
]时,讨论关于x的方程2cos2x-sinx+α=0(α∈R)实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆心在第二象限内,半径为2
5
的圆O1与x轴交于(-5,0)和(3,0)两点.
(1)求圆O1的方程;
(2)求圆O1的过点A(1,6)的切线方程;
(3)已知点N(9,2)在(2)中的切线上,过点A作O1N的垂线,垂足为M,点H为线段AM上异于两个端点的动点,以点H为中点的弦与圆交于点B,C,过B,C两点分别作圆的切线,两切线交于点P,求直线PO1的斜率与直线PN的斜率之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在二项式(
1
2
+2x)n的展开式中.
(Ⅰ)若第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项;
(Ⅱ)若前三项的二项式系数和等于79,求展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

利用单调性的定义,讨论f(x)=
ax
x2-1
在(-1,1)上的单调性,a为实数且a≠0.

查看答案和解析>>

同步练习册答案