精英家教网 > 高中数学 > 题目详情
20.在极坐标系中,以极点为圆心,1为半径的圆的极坐标方程是(  )
A.ρ=1B.ρ=sinθC.ρcosθ=1D.ρ=-cosθ

分析 利用已知即可得出圆的极坐标方程.

解答 解:以极点为圆心,1为半径的圆的极坐标方程是ρ=1.
故选:A.

点评 本题考查了圆的极坐标方程差,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2\sqrt{2}cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),曲线 C2的极坐标方程为ρcosθ-$\sqrt{2}$ρsinθ-4=0.
(1)求曲线C1的普通方程和曲线  C2的直角坐标方程;
(2)设P为曲线C1上一点,Q为曲线 C2上一点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ln(x+1)+$\frac{a}{x+2}$.
(1)当a=$\frac{25}{4}$时,求f(x)的单调递减区间;
(2)若当x>0时.f(x)>1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x-alnx,g(x)=lnx+$\frac{a}{x}$(a∈R).
(1)设函数h(x)=f(x)-g(x),求函数h(x)的单调区间;
(2)若在[1,e]上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=alnx+$\frac{1}{x}$.
(1)当a=1时,讨论f(x)的单调性
(2)是否存在正数a,使得f(x)在[1,e]上最小值为0?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在抛物线y=2-x2上,哪一点的切线处于下述位置?
(1)与x轴平行;
(2)平行于第一象限角的平分线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.sin2840°+cos540°+tan225°-cos(-330°)+sin(-210°)的值是$\frac{{5-2\sqrt{3}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x+a|-|x+3|,a∈R.
(Ⅰ)当a=1时,解不等式f(x)≤1;
(Ⅱ)若x∈[0,3]时,f(x)≤4恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.方程sin2x+$\sqrt{3}$cos2x=m(0<m<$\frac{1}{2}$)在区间x∈[0,2π]上的所有解的和等于$\frac{11π}{3}$.

查看答案和解析>>

同步练习册答案