分析 (Ⅰ)当a=-1时,不等式为|x+1|-|x+3|≤1,对x的取值范围分类讨论,去掉上式中的绝对值符号,解相应的不等式,最后取其并集即可;
(Ⅱ)依题意知,|x-a|≤x+7,由此得a≥-7且a≤2x+7,当x∈[0,3]时,易求2x+7的最小值,从而可得a的取值范围.
解答 解:(Ⅰ)当a=-1时,不等式为|x+1|-|x+3|≤1.
当x≤-3时,不等式化为-(x+1)+(x+3)≤1,不等式不成立;
当-3<x<-1时,不等式化为-(x+1)-(x+3)≤1,解得-2.5≤x<-1;
当x≥-1时,不等式化为(x+1)-(x+3)≤1,不等式必成立.
综上,不等式的解集为[-2.5,+∞).…(5分)
(Ⅱ)当x∈[0,3]时,f(x)≤4即|x-a|≤x+7,
由此得a≥-7且a≤2x+7.
当x∈[0,3]时,2x+7的最小值为7,
所以a的取值范围是[-7,7].…(10分)
点评 本题考查绝对值不等式的解法,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 54 | B. | 28 | C. | 36 | D. | 72 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com