精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=xlnx-$\frac{a}{2}$x2-x在定义域内为单调函数,则实数a的取值范围是$[\frac{1}{e},+∞)$.

分析 求出f(x)的导数,问题转化为f′(x)=lnx-ax<0在(0,+∞)恒成立,求出f′(x)的最大值,得到关于a的不等式,解出即可.

解答 解:f(x)=xlnx-$\frac{a}{2}$x2-x的定义域是(0,+∞),
f′(x)=lnx-ax,
若函数f(x)在定义域上单调,
则f′(x)=lnx-ax≤0在(0,+∞)恒成立,
或f′(x)=lnx-ax≥0在(0,+∞)恒成立,
①f′(x)=lnx-ax≤0时,显然a>0,
f″(x)=$\frac{1-ax}{x}$,
令f″(x)>0,解得:0<x<$\frac{1}{a}$,
令f″(x)<0,解得:x>$\frac{1}{a}$,
∴f′(x)在(0,$\frac{1}{a}$)递增,在($\frac{1}{a}$,+∞)递减,
∴f′(x)max=f′($\frac{1}{a}$)=ln$\frac{1}{a}$-1≤0,
解得:a≥$\frac{1}{e}$,
②f′(x)=lnx-ax≥0时,即lnx≥ax在(0,+∞)恒成立,
显然不合题意;
故答案为:$[\frac{1}{e},+∞)$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x-alnx,g(x)=lnx+$\frac{a}{x}$(a∈R).
(1)设函数h(x)=f(x)-g(x),求函数h(x)的单调区间;
(2)若在[1,e]上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x+a|-|x+3|,a∈R.
(Ⅰ)当a=1时,解不等式f(x)≤1;
(Ⅱ)若x∈[0,3]时,f(x)≤4恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=sinxcosx的周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD的底面是直角梯形,AD∥BC,∠ADC=90°,AD=2BC,PA⊥平面ABCD,E为线段PA的中点.
(Ⅰ)求证:BE∥平面PCD;
(Ⅱ)若PA=AD=DC=2,求点E到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x2-2)的定义域是[-1,1],则函数f(3x+2)的定义域为[-$\frac{4}{3}$,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.方程sin2x+$\sqrt{3}$cos2x=m(0<m<$\frac{1}{2}$)在区间x∈[0,2π]上的所有解的和等于$\frac{11π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知四棱锥P-ABCD的底面为菱形,且∠ABC=60°,E是DP中点.
(1)证明:PB∥平面ACE;
(2)若AP=PB=$\sqrt{2}$,AB=PC=2,求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如果A(3,1),B(-2,K),C(8,11)三点共线,那么K的值为-9.

查看答案和解析>>

同步练习册答案