分析 (Ⅰ)设线段AD的中点为F,连接EF,FB.通过线面平行证明平面EFB∥平面PCD,再证明:BE∥平面PCD;
(Ⅱ)由(Ⅰ)可知,点E到平面PCD的距离与点B到平面PCD的距离相等,利用,等体积方法求点E到平面PCD的距离.
解答 (Ⅰ)证明:设线段AD的中点为F,连接EF,FB.
在△PAD中,EF为中位线,![]()
故EF∥PD.
又EF?平面PCD,PD?平面PCD,
所以EF∥平面PCD.
在底面直角梯形ABCD中,FD∥BC,且FD=BC,故四边形DFBC为平行四边形,
即FB∥CD.
又FB?平面PCD,CD?平面PCD,所以FB∥平面PCD.
又因为EF?平面EFB,FB?平面EFB,且EF∩FB=F,所以平面EFB∥平面PCD.
又BE?平面EFB,所以有BE∥平面PCD.…(6分)
(Ⅱ)解:由(Ⅰ)可知,点E到平面PCD的距离与点B到平面PCD的距离相等.
连接AC,设点B到平面PCD的距离为h,
因为PA⊥平面ABCD,AC?平面ABCD,所以PA⊥AC.
根据题意,在Rt△PAD中,PD=2$\sqrt{2}$,在Rt△ADC中,AC=2$\sqrt{2}$,
在Rt△PAC中,PC=2$\sqrt{3}$,由于PD2+CD2=PC2,
所以△PCD为直角三角形,S△PCD=2$\sqrt{2}$.
VB-PCD=$\frac{1}{3}$•S△PCD•h=$\frac{2\sqrt{2}}{3}$h.
又VP-BCD=$\frac{1}{3}$•S△BCD•AP=$\frac{2}{3}$,所以h=$\frac{\sqrt{2}}{2}$.
即点E到平面PCD的距离为$\frac{\sqrt{2}}{2}$.…(12分)
点评 本题考查直线与平面平行的证明,考查点E到平面PCD的距离、三棱锥体积的求法,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
| 男 | 女 | 总计 | |
| 爱好体育 | a | b | a+b |
| 爱好文娱 | c | d | c+d |
| 总计 | a+c | b+d | a+b+c+d |
| p(k2≥k) | 0.5 | 0.4 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-4,-1) | B. | (-1,1) | C. | (1,2) | D. | (-4,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com