精英家教网 > 高中数学 > 题目详情
在△ABC中,a、b、c分别是角A、B、C的对边长,已知a2-c2=b2-bc,求:
(1)角A的大小;   
(2)若a=2,b+c=4,求b,c的大小.
考点:余弦定理,正弦定理
专题:解三角形
分析:(1)△ABC中,由条件利用余弦定理,求得cos A=
b2+c2-a2
2bc
的值,即可得到A的值.
(2)在△ABC中,由条件可得 4=b2+c2-bc.再根据b+c=4,可得 b、c的值.
解答: 解:(1)△ABC中,∵b2+c2-a2=bc,由余弦定理,
得cosA=
b2+c2-a2
2bc
=
bc
2bc
=
1
2
,∴A=60°.…(6分)
(2)在△ABC中,∵a2-c2=b2-bc,a=2,∴4=b2+c2-bc.
再根据b+c=4,可得 b=c=2.
点评:本题主要考查正弦定理、余弦定理的应用,根据三角函数的值求角,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

曲线y=2x-x3在横坐标为-1的点处的切线为l,则直线l的方程为(  )
A、x+y+2=0
B、x-y=0
C、x-y-2=0
D、x+y-2=0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABEF是等腰梯形,AB∥EF,AF=BE=2,EF=4
2
,AB=2
2
,ABCD是矩形.AD⊥平面ABEF,其中Q,M分别是AC,EF的中点,P是BM中点.
(Ⅰ)求证:PQ∥平面BCE;
(Ⅱ)求证:AM⊥平面BCM;
(Ⅲ)求点F到平面BCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

画出下列不等式组表示的平面区域
2x+3y≤12
2x+3y>-6 
x≥0
y≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
3
,长轴长为2
3

(Ⅰ)求G的方程;
(Ⅱ)直线y=kx+1与椭圆G交于不同的两点A,B,若存在点M(m,0),使得|AM|=|BM|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|1≤x≤2},B={x|x2-3x+a≤0},若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:ax-2y+2=0(a∈R)
(1)若与直线m:x+(a-3)y+1=0(a∈R)平行,求a;
(2)若直线l始终平分圆C:(x-1)2+y2=2的周长,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x1,x2,…xn∈R+,且x1x2…xn=1,求证:(
2
+x1)(
2
+x2)…(
2
+xn)≥(
2
+1)n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合A={x|x2-2x-3>0},B={x||x-3|<1},则(∁UA)∩B=
 

查看答案和解析>>

同步练习册答案