精英家教网 > 高中数学 > 题目详情

已知f(x)=x2+ax+3-a,若当x∈[-2,2]时,f(x)≥0恒成立,求a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某地上年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至元,则本年度新增用电量(亿千瓦时)与元成反比例.又当时,
(1)求之间的函数关系式;
(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年增加20%?[收益用电量(实际电价-成本价)]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求证:二次函数的图象与轴交于的充要条件为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为米,高为米,体积为立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为元(为圆周率).
(1)将表示成的函数,并求该函数的定义域;
(2)讨论函数的单调性,并确定为何值时该蓄水池的体积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2x,g(x)=+2.
(1)求函数g(x)的值域;
(2)求满足方程f(x)-g(x)=0的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lnx+a,其中a为大于零的常数.
(1)若函数f(x)在区间[1,+∞)内单调递增,求实数a的取值范围.
(2)求证:对于任意的n∈N*,且n>1时,都有lnn>++…+恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知关于x的一元二次函数
(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为
求函数在区间[上是增函数的概率;
(2)设点()是区域内的随机点,求函数上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知不等式x2-logax<0,当x∈(0,)时恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设a>0且a≠1,函数y=a2x+2ax-1在[-1,1]上的最大值是14,求a的值.

查看答案和解析>>

同步练习册答案