精英家教网 > 高中数学 > 题目详情
已知椭圆的方程为它的一个焦点与抛物线的焦点重合,离心率过椭圆的右焦点F作与坐标轴不垂直的直线交椭圆于A、B两点.(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点求直线的方程
解:(Ⅰ)设椭圆的右焦点为(c,0)
因为的焦点坐标为(2,0),所以c=2    ……………………2分
  则a2="5," b2=1  故椭圆方程为:……………4分
(Ⅱ)由(1)得F(2,0),设的方程为y=k(x-2)(k≠0)
 ………6分


  
…………………………10分

………………………14分
本试题考查了椭圆与抛物线的位置关系,以及利用抛物线焦点坐标和椭圆的离心率,我们求解得到椭圆的方程。而第二问中,说明了三角形MAB是等腰三角形,来利用距离相等求解得到直线方程。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

设椭圆C1的离心率为5/13,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为
A.(x/4)2-(y/3)2=1B.(x/13)2-(y/5)2=1
C.(x/3)2-(y/4)2=1D.(x/13)2-(y/12)2=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆O:,点O为坐标原点,一条直线:与圆O相切并与椭圆交于不同的两点A、B
(1)设,求的表达式;
(2)若,求直线的方程;
(3)若,求三角形OAB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆.,分别为椭圆的左,右焦点,, 分别为椭圆的左,右顶点.过右焦点且垂直于轴的直线与椭圆在第一象限的交点为.
(1) 求椭圆的标准方程;
(2) 直线与椭圆交于,两点, 直线交于点.当直线变化时, 点是否恒在一条定直线上?若是,求此定直线方程;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,椭圆的中心为坐标原点,左焦点为为椭圆的上顶点,且.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线与椭圆交于两点,直线)与椭圆交于两点,且,如图所示.
(ⅰ)证明:;
(ⅱ)求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

且两两互相垂直的直线分别交椭圆。(13分)
(1)求的最值
(2)求证:为定值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设椭圆的离心率,右焦点到直线的距离为坐标原点。
(I)求椭圆的方程;
(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直线的距离为定值,并求弦长度的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P及椭圆,Q是椭圆上的动点,则的最大值为              

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的右焦点为,右准线为,若过点且垂直于轴的弦的弦长等于点的距离,则椭圆的离心率是      

查看答案和解析>>

同步练习册答案