【题目】已知椭圆M:
1(a>b>0)的长轴长为2
,离心率为
,过点(0,1)的直线l与M交于A,B两点,且
.
(1)求M的方程;
(2)求点P的轨迹方程.
【答案】(1)
;(2)x2+2y2=2y.
【解析】
(1)根据题意2a=2
,
,解方程组即可求解.
(2)当直线AB的斜率存在且不为0,设直线AB的方程为y=kx+1,将直线与椭圆联立,求出交点坐标,再根据中点坐标公式消k即可求出轨迹方程.
(1)由题意可知,长轴长2a=2
,即a
,离心率e
,
则c=1,b2=a2﹣c2=1,
所以椭圆M的方程为
;
(2)当直线AB的斜率存在且不为0,
设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2),P(x,y),
联立方程组
,消去y,整理得(1+2k2)x2+4kx=0,
解得x1=0,x2
,y1=1,y2
,
由题意可知,P为AB的中点,
所以
,消去k,整理得x2+2y2=2y,
当斜率不存在时,A(0,1),B(0,﹣1),
则P(0,0),满足x2+2y2=2y,
所以点P的轨迹方程x2+2y2=2y.
科目:高中数学 来源: 题型:
【题目】已知向量
,
是坐标原点,若
,且
方向是沿
的方向绕着
点按逆时针方向旋转
角得到的,则称
经过一次
变换得到
,现有向量
经过一次
变换后得到
,
经过一次
变换后得到
,…,如此下去,
经过一次
变换后得到
,设
,
,
,则
等于( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线C的参数方程为
(t为参数),直线
过点
且倾斜角为
,以坐标原点O为极点,x轴正半轴为极轴,取相同的单位长度建立极坐标系.
(1)写出曲线C的极坐标方程和直线
的参数方程;
(2)若直线l与曲线C交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是椭圆
的左右顶点,
点为椭圆
上一点,点
关于
轴的对称点为
,且
.
(1)若椭圆
经过圆
的圆心,求椭圆
的方程;
(2)在(1)的条件下,若过点
的直线与椭圆
相交于不同的
两点,设
为椭圆
上一点,且满足
(
为坐标原点),当
时,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣ax,其中a为实数.
(1)求出f(x)的单调区间;
(2)在a<1时,是否存在m>1,使得对任意的x∈(1,m),恒有f(x)+a>0,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的多面体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,CM⊥AB,垂足为M,且AE=AC=2
,BD=2BC=4,
![]()
(1)求证:CM⊥ME;
(2)求二面角A﹣MC﹣E的余弦值.
(3)在线段DC上是否存在一点N,使得直线BN∥平面EMC,若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在以A,B,C,D,E,F为顶点的多面体中,四边形
是菱形,![]()
![]()
![]()
(1)求证:平面ABC⊥平面ACDF
(2)求平面AEF与平面ACE所成的锐二面角的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为
的正方体
中,O是AC的中点,E是线段D1O上一点,且D1E=λEO.
(1)若λ=1,求异面直线DE与CD1所成角的余弦值;
(2)若平面CDE⊥平面CD1O,求λ的值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com