【题目】已知
中,角
所对的边分别是
,
的面积为
,且
,
.
(1)求
的值;
(2)若
,求
的值.
【答案】(1)
(2)![]()
【解析】
(1)由已知利用三角形面积公式可得tanA=2,利用同角三角函数基本关系式可求sinA,cosA,由三角形内角和定理,两角和的余弦函数公式可求cosB的值.
(2)利用同角三角函数基本关系式可求sinB,利用正弦定理可得b的值,即可得S的值.
(1)∵S
bcsinA=bccosA,
∴sinA=2cosA,可得:tanA=2,
∵△ABC中,A为锐角,
又∵sin2A+cos2A=1,
∴可得:sinA
,cosA
,
又∵C
,
∴cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC
,
(2)在△ABC中,sinB
,
由正弦定理,可得:b
3,
∴S=bccosA=3.
科目:高中数学 来源: 题型:
【题目】运输公司
年有
万辆公交车,计划
年投入
辆新型号公交车,以后每年投入的新型号公交车数量均比上年增加
.
(1)
年应投入多少辆新型号公交车?
(2)从
年到
年间共投入多少辆新型号公交车?
(3)从哪一年开始,该公司新型号公交车总量超过该公司公交车总量的
?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)的离心率为
,椭圆
与
轴交于
两点,且
.
(1)求椭圆
的方程;
(2)设点
是椭圆
上的一个动点,且点
在
轴的右侧,直线
与直线
交于
两点,若以
为直径的圆与
轴交于
,求点
横坐标的取值范围及
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
过点
,且右焦点为
.
(1)求椭圆
的方程;
(2)过点
的直线
与椭圆
交于
两点,交
轴于点
.若
,求证:
为定值;
(3)在(2)的条件下,若点
不在椭圆
的内部,点
是点
关于原点
的对称点,试求三角形
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将
个不同的红球和
个不同的白球,放入同一个袋中,现从中取出
个球.
(1)若取出的红球的个数不少于白球的个数,则有多少种不同的取法;
(2)取出一个红球记
分,取出一个白球记
分,若取出
个球的总分不少于
分,则有多少种不同的取法;
(3)若将取出的
个球放入一箱子中,记“从箱子中任意取出
个球,然后放回箱子中”为一次操作,如果操作三次,求恰有一次取到
个红球并且恰有一次取到
个白球的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从甲、乙两班各随机抽取10名同学,下面的茎叶图记录了这20名同学在2018年高考语文作文题目中的成绩(单位:分).已知语文作文题目满分为60分,“分数
分,为及格;分数
分,为高分”,若甲、乙两班的成绩的平均分都是44分,
![]()
(1)求
的值;
(2)若分别从甲、乙两班随机各抽取1名成绩为高分的学生,求抽到的学生中,甲班学生成绩高于乙班学生成绩的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com