精英家教网 > 高中数学 > 题目详情

()(本小题满分12分)已知椭圆C: 的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1是,坐标原点O到直线l的距离为.

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?

若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

:(Ⅰ)设 当的斜率为1时,其方程为的距离为

    

   故 

       由

       得 =

(Ⅱ)C上存在点,使得当转到某一位置时,有成立.

由 (Ⅰ)知C的方程为+=6. 设

 (ⅰ)

 C 成立的充要条件是, 且

整理得

故                   ①

于是 , =,

     

        代入①解得,,此时

     于是=, 即 w.w.w.k.s.5.u.c.o.m    

     因此, 当时,

 当时,.

(ⅱ)当垂直于轴时,由知,C上不存在点P使成立.

综上,C上存在点使成立,此时的方程为

 w.w.w.k.s.5.u.c.o.m    


解析:

:用参数表示出离心率、直线方程和坐标原点的距离,可以求出椭圆的方程,入手较易;题目出现了向量式,解答思路是用点的坐标表示出来,把直线和方程联立消元,利用韦达定理,用“设而不求”的整体思想求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知关于的一元二次函数  (Ⅰ)设集合P={1,2, 3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为,求函数在区间[上是增函数的概率;(Ⅱ)设点()是区域内的随机点,求函数上是增函数的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分) 一几何体的三视图如图所示,,A1A=,AB=,AC=2,A1C1=1,在线段上且=.

(I)证明:平面⊥平面

(II)求二面角的余弦值.

查看答案和解析>>

同步练习册答案