精英家教网 > 高中数学 > 题目详情

(本小题满分12分) 一几何体的三视图如图所示,,A1A=,AB=,AC=2,A1C1=1,在线段上且=.

(I)证明:平面⊥平面

(II)求二面角的余弦值.

(I)见解析(II)


解析:

方法一  :由三视图可知几何体是底面以为直角,侧棱垂直底面的三棱台,      ---------2分

(I)证明  ∵A1A⊥平面ABC,BC平面ABC,

∴A1A⊥BC.

在Rt△ABC中,AB=,AC=2,∴BC=.

∵BD∶DC=1∶2,∴BD=.又==,

∴△DBA∽△ABC,∴∠ADB=∠BAC=90°,

即AD⊥BC.

又A1A∩AD=A,∴BC⊥平面A1AD.

∵BC平面BCC1B1,∴平面A1AD⊥平面BCC1B1. --------7分

(II)解  如图①,作AE⊥C1C交C1C于E点,连接BE,由已知得AB⊥平面ACC1A1,

∴AE是BE在平面ACC1A1内的射影.

由三垂线定理知BE⊥CC1,

∴∠AEB为二面角A—CC1—B的平面角. 图①

                                                 

过C1作C1F⊥AC交AC于F点,

则CF=AC-AF=1,

C1F=A1A=,∴∠C1CF=60°.

在Rt△AEC中,

AE=ACsin60°=2×=,

在Rt△BAE中,tan∠AEB===,

∴cos∠AEB=,              

即二面角A—CC1—B余弦值为  -------12分

方法二  (I)  证明  如图②,建立空间直角坐标系,

则A(0,0,0),B(,0,0),C(0,2,0),

A1(0,0,),C1(0,1, ).

∵BD∶DC=1∶2,∴=,

∴D点坐标为,

=, =(-,2,0),=(0,0,).

·=0,·=0,

∴BC⊥AA1,BC⊥AD.又A1A∩AD=A,

∴BC⊥平面A1AD.又BC平面BCC1B1

∴平面A1AD⊥平面BCC1B1.

(II)解  ∵BA⊥平面ACC1A1,取m==(,0,0)为平面ACC1A1的法向量.

设平面BCC1B1的法向量为n=(x,y,z),

·n=0,·n=0,

∴x=y,z=,可取y=1,则n=

cos〈m,n〉=

=,

即二面角A—CC1—B的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案