精英家教网 > 高中数学 > 题目详情
(2008•虹口区二模)(理)已知正方形ABCD的边长为1,PD⊥平面ABCD,PD=3,
(1)若E是棱PB上一点,过点A、D、E的平面交棱PC于F,求证:BC∥EF;
(2)求二面角A-PB-D的大小.
分析:(1)先利用直线和平面平行的判定定理得AD∥面PBC,再利用直线和平面平行的性质定理得AD∥EF,最后根据平行线的传递性证出BC∥EF.
(2)连接AC交DB于O证出,AO⊥面PDB,过O作OH垂直PB于H,连接AH得出PB⊥面AOH,所以AH⊥PB,∠AHO 则为二面角A-PB-D的 的平面角.在直角三角形AOH中求解.
解答:解:(1)证明∵AD∥BC,AD?面PBC,BC?面PBC,根据直线和平面平行的判定定理得AD∥面PBC.
又AD?面ADE,面ADE∩面PBC=EF由直线和平面平行的性质定理得AD∥EF∴BC∥EF.
(2)∵PD⊥平面ABCD,∴面PDB⊥平面ABCD,面PDB∩平面ABCD=DB.
连接AC交DB于O,AO⊥面PDB,过O作OH垂直PB于H,连接AH,PB⊥AOH,AH⊥PB,
∠AHO 则为二面角A-PB-D的 的平面角.
在△PDB中,BO:PB=OH:PD,即
2
2
11
=OH:3,∴OH=
3
22
22

在直角三角形AOH中,tan∠AHO=
AO
OH
=
2
2
3
22
22
=
11
3
,∠AHO=arctan
11
3
点评:本题主要考查空间线线、线面关系、二面角的度量、考查化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•虹口区二模)若复数(1+ai)•(a2+i)是纯虚数,则实数a=
0或1
0或1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•虹口区二模)等差数列{an}中,S20=30,则a3+a18=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•虹口区二模)集合A={x||x|≤4,x∈R},B{x||x-3|≤a,x∈R},且A?B,则实数a的取值范围是
(-∞,1]
(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•虹口区二模)当x>2时,使不等式x+
1x-2
≥a恒成立的实数a的取值范围是
(-∞,4]
(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•虹口区二模)过点A(0,3),被圆(x-1)2+y2=4截得的弦长为2
3
的直线方程是
x=0或y=-
4
3
x+3
x=0或y=-
4
3
x+3

查看答案和解析>>

同步练习册答案