精英家教网 > 高中数学 > 题目详情

【题目】下列说法正确的是( )

A. 若命题均为真命题,则命题为真命题

B. “若,则”的否命题是“若

C. ,“”是“”的充要条件

D. 命题”的否定为

【答案】D

【解析】

利用复合命题的真假四种命题的逆否关系以及命题的否定,充要条件判断选项的正误即可.

对于A:若命题p,¬q均为真命题,则q是假命题,所以命题p∧q为假命题,所以A不正确;
对于B:“若,则”的否命题是“若,则”,所以B不正确;
对于C:在△ABC中, ““A+B=“A=-B”sinA=cosB,
反之sinA=cosB,A+B=,或A=+B,“C=”不一定成立,
∴C=是sinA=cosB成立的充分不必要条件,所以C不正确;
对于D:命题p:“x0∈R,x02-x0-5>0”的否定为¬p:“x∈R,x2-x-5≤0”,所以D正确.
故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex-x2 -kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点.

(1)求实数k的取值范围;

(2)证明:f(x)的极大值不小于1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)|3x2|.

(1)解不等式f(x)<4|x1|

(2)已知mn1(mn>0),若|xa|f(x)≤(a>0)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,若椭圆经过点,且△PF1F2的面积为2

1)求椭圆的标准方程;

2)设斜率为1的直线与以原点为圆心,半径为的圆交于AB两点,与椭圆C交于CD两点,且),当取得最小值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择物理、化学和生物三个选考科目,则学生甲的选考方案确定,物理、化学和生物为其选考方案.

某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:

性别

选考方案确定情况

物理

化学

生物

历史

地理

政治

男生

选考方案确定的有8

8

8

4

2

1

1

选考方案待确定的有6

4

3

0

1

0

0

女生

选考方案确定的有10

8

9

6

3

3

1

选考方案待确定的有6

5

4

1

0

0

1

1)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?

2)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生中随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史学科的概率;

3)从选考方案确定的8名男生中随机选出2名,设随机变量的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到其焦点下的距离为10.

(1)求抛物线C的方程;

(2)设过焦点F的的直线与抛物线C交于两点,且抛物线在两点处的切线分别交x轴于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1970424日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开启了人造卫星的新篇章,人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为,下列结论不正确的是( )

A.卫星向径的最小值为

B.卫星向径的最大值为

C.卫星向径的最小值与最大值的比值越小,椭圆轨道越扁

D.卫星运行速度在近地点时最小,在远地点时最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小型水库的管理部门为研究库区水量的变化情况,决定安排两个小组在同一年中各自独立的进行观察研究.其中一个小组研究水源涵养情况.他们通过观察入库的若干小溪和降雨量等因素,随机记录了天的日入库水量数据(单位:),得到下面的柱状图(如图甲).另一小组则研究由于放水、蒸发或渗漏造成的水量消失情况.他们通过观察与水库相连的特殊小池塘的水面下降情况来研究库区水的整体消失量,随机记录了天的库区日消失水量数据(单位:),并将观测数据整理成频率分布直方图(如图乙).

1)据此估计这一年中日消失水量的平均值;

2)以频率作为概率,试解决如下问题:

分别估计日流入水量不少于和日消失量不多于的概率;

试估计经过一年后,该水库的水量是增加了还是减少了,变化的量是多少?(一年按天计算),说明理由.

查看答案和解析>>

同步练习册答案