精英家教网 > 高中数学 > 题目详情
10.在直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在l上,若圆C上存在唯一一点M,使|MA|=2|MO|,则圆心C的非零横坐标是$\frac{12}{5}$.

分析 设M(x,y),由MA=2MO,利用两点间的距离公式列出关系式,整理后得到点M的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D,由M在圆C上,得到圆C与圆D相切,根据两圆的半径长,能求出结果.

解答 解:设点M(x,y),由MA=2MO,知:$\sqrt{{x}^{2}+(y-3)^{2}}$=2$\sqrt{{x}^{2}+{y}^{2}}$,
化简得:x2+(y+1)2=4,
∴点M的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D,
又∵点M在圆C上,圆C上存在唯一一点M,使|MA|=2|MO|,
∴圆C与圆D相切,
∴|CD|=1或CD=3,
∵|CD|=$\sqrt{{a}^{2}+(2a-3)^{2}}$,∴解得a=0或a=$\frac{12}{5}$.
∴圆心C的非零横坐标是$\frac{12}{5}$.
故答案为:$\frac{12}{5}$.

点评 此题考查了圆的切线方程,点到直线的距离公式,以及圆与圆的位置关系的判定,涉及的知识有:两直线的交点坐标,直线的点斜式方程,两点间的距离公式,圆的标准方程,是一道综合性较强的试题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设f(x)是定义在R上的奇函数,且f(2-x)=f(x),当-1≤x<0时,f(x)=log2(-3x+1),则f(2017)的值为(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.底面为正方形且侧棱与底面垂直的四棱柱与圆锥的组合体的三视图,如图所示,则该组合体的体积为(  )
A.$\frac{π}{3}$+2B.$\frac{π}{3}$+$\frac{2}{3}$C.π$+\frac{2}{3}$D.π+2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}为等比数列,且a3+a5=π,则a4(a2+2a4+a6)=π2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=log2x,在区间(0,5)上随机取一个数x,则f(x)<2的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知圆O:x2+y2=4与直线y=x交于点A,B,直线y=$\sqrt{3}$x+m(m>0)与圆O相切于点P,则△PAB的面积为(  )
A.$\sqrt{3}$+1B.$\sqrt{6}$+$\sqrt{2}$C.$\sqrt{6}$+2D.$\sqrt{3}+$$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知圆x2+y2+2x-2y-6=0截直线x+y+a=0所得弦的长度为4,则实数a的值是±2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,x≥0}\\{x-{x}^{2},x<0}\end{array}\right.$,若f(a)>f(2-a),则a的取值范围是a>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列各函数值域及单调递增区间:
(1)y=$\sqrt{{3}^{2x-1}-\frac{1}{9}}$;(2)y=0.5${\;}^{{x}^{2}-2x-1}$.

查看答案和解析>>

同步练习册答案