精英家教网 > 高中数学 > 题目详情
关于函数f(x)=lg
x2+1
|x|
(x≠0)
,有下列命题:(1)其图象关于y轴对称;(2)当x>0时,f(x)是增函数,当x<0时,f(x)是减函数;(3)f(x)在区间(-1,0)和(1,+∞)上均为增函数;(4)f(x)的最小值是lg2.其中所有正确的结论序号是(  )
A、(1)(2)(3)
B、(1)(2)(4)
C、(1)(3)(4)
D、(2)(3)(4)
分析:根据函数奇偶性的定义,我们可以判断出函数的奇偶性,进而判断(1)的真假;结合复合函数的单调性及“对勾”函数的单调性,我们可以判断出函数的单调性,并求出函数的最小值,进而判断出(2),(3),(4)的真假,进而得到答案.
解答:解:由已知中函数f(x)=lg
x2+1
|x|
(x≠0)
,可得
函数为偶函数,则(1)其图象关于y轴对称正确;
区间(-∞,-1),(0,1)是函数的单调减区间,(-1,0),(1,+∞)是函数的单调增区间,故(2)错误,(3)正确;
当x=±1时,函数取最小值lg2,故(4)是正确;
故选C
点评:本题考查的知识点是对数函数的图象与性质,函数奇偶性和单调性的综合应用,复合函数的单调性,及“对勾函数”的单调性,是多个函数难点的综合应用,难度比较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列四个命题:
(1)一定存在直线l,使函数f(x)=lgx+lg
12
的图象与函数g(x)=lg(-x)+2的图象关于直线l对称;
(2)在复数范围内,a+bi=0?a=0,b=0
(3)已知数列an的前n项和为Sn=1-(-1)n,n∈N*,则数列an一定是等比数列;
(4)过抛物线y2=2px(p>0)上的任意一点M(x°,y°)的切线方程一定可以表示为y0y=p(x+x0).
则正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
)
的图象为L,下列说法不正确的是(  )
A、图象L关于直线x=
6
对称
B、图象L关于点(
12
,0)
对称
C、函数f(x)在(-
π
6
π
3
)
上单调递增
D、将L先向左平移
π
12
个单位,再将所有点的横坐标缩短到原来的
1
2
倍(纵坐标不变),得到y=sinx的图象

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
①若f′(x0)=0,则函数y=f(x)在x=x0处取得极值;
②若m≥-1,则函数f(x)=log
1
2
(x2-2x-m)
的值域为R;
③“a=1”是“函数f(x)=
a-ex
1+aex
在定义域上是奇函数”的充分不必要条件.
④函数y=f(1+x)的图象与函数y=f(l-x)的图象关于y轴对称;
⑤“x1>1且x2>2”是“x1+x2>3且x1x2>2”的充要条件;
其中正确命题的个数是
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的为
①③④
①③④

①函数y=f(x)与直线x=l的交点个数为0或l;
②a∈(
1
4
,+∞)时,函数y=lg(x2+x+a)的值域为R;
③函数y=f(2-x)与函数y=f(x-2)的图象关于直线x=2对称;
④若函数f(x)=ax,则?x1,?x2∈R,都有f(
x1+x2
2
)<
f(x1)+f(x2
2

⑤若函数f(x)=log
2
x
,则?x1,x2∈(0,+∞),都有
f(x1)-f(x2)
x1-x2
<0

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四个命题:
(1)一定存在直线l使函数f(x)=lgx+lg
1
2
的图象与函数g(x)=lg(-x)+2的图象关于直线l对称
(2)不等式:arcsinx≤arccosx的解集为[
2
2
,1]

(3)已知数列{an}的前n项和为Sn=1-(-1)n,n∈N*,则数列{an}一定是等比数列;
(4)过抛物线y2=2px(p>0)上的任意一点M(x°,y°)的切线方程一定可以表示为y0y=p(x+x0).
则正确命题的序号为
(3)(4)
(3)(4)

查看答案和解析>>

同步练习册答案