精英家教网 > 高中数学 > 题目详情
在正三棱锥P-ABC中,D为PA的中点,O为△ABC的中心,给出下列四个结论:①OD∥平面PBC;  ②OD⊥PA;③OD⊥BC;  ④PA=2OD.其中正确结论的序号是
③④
③④
分析:取BC中点M,连接AM,PM,则O∈AM.由AO=2OM,OD与PM不平行,故OD不平行于平面PBC;由OA≠OP,D为PA中点,知OD与PA不垂直;同P-ABC为正三棱锥,知BC⊥PM,BC⊥AM,所以OD⊥BC;由PO垂直于平面ABC,OA属于平面ABC,知PO垂直于OA,△AOP为直角三角形,所以PA=2OD.
解答:解:取BC中点M,连接AM,PM,
则O∈AM.
∵AO=2OM,
∴OD与PM不平行,
∴OD∥平面PBC不成立,即①错误;
∵OA≠OP,D为PA中点,
∴OD⊥PA不成立,即②错误;
∵P-ABC为正三棱锥,
∴BC⊥PM,BC⊥AM,
∴BC⊥面APM,
∴OD⊥BC,即③成立;
∵PO垂直于平面ABC,OA属于平面ABC
∴PO垂直于OA
∴三角形AOP为直角三角形
∵D为AP中点
∴PA=2OD,即④成立.
故答案为:③④.
点评:本题考查棱锥的结构特征,解题时要认真审题,仔细解答,注意观察,熟练掌握棱锥的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、在正三棱锥P-ABC中,D、E分别是AB、BC的中点,有下列四个论断:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE;④平面PDE⊥平面ABC.其中正确的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,D,E分别是AB,BC的中点,有下列三个论断:
①AC⊥PB;
②AC∥平面PDE;
③AB⊥平面PDE.
其中正确论断的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,三条侧棱两两垂直,且侧棱长为a,则点P到平面ABC的距离为
3
3
a
3
3
a

查看答案和解析>>

科目:高中数学 来源: 题型:

在正三棱锥P-ABC中,AB=
2
,PA=
3
+1
,过点A作截面交PB,PC分别于D,E,则截面△ADE的周长的最小值是
6
+
2
6
+
2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正三棱锥P-ABC中,M、N分别是侧棱PB、PC的中点,若截面AMN⊥侧面PBC,底面边长为2,则此三棱锥的体积是(  )
A、
3
2
B、
5
3
C、
5
D、
15
3

查看答案和解析>>

同步练习册答案