精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=ex+2(x<0)与g(x)=ln(x+a)+2的图象上存在关于y轴对称的点,则实数a的取值范围是(  )
A.(-∞,e)B.(0,e)C.(e,+∞)D.(-∞,1)

分析 由题意可化为e-x-ln(x+a)=0在(0,+∞)上有解,即函数y=e-x与y=ln(x+a)在(0,+∞)上有交点,从而可得ln(a)<1,从而求解.

解答 解:由题意知,方程f(-x)-g(x)=0在(0,+∞)上有解,
即e-x-ln(x+a)=0在(0,+∞)上有解,
即函数y=e-x与y=ln(x+a)在(0,+∞)上有交点,
则lna<1,
即0<a<e,
则a的取值范围是:(0,e).
故选:B.

点评 本题考查了函数的图象的变换及函数与方程的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图所示的茎叶图记录了甲、乙两组各5名同学的投篮命中次数,乙组记录中有一个数据模糊,无法确认,在图中用x表示.
(1)若乙组同学投篮命中次数的平均数比甲组同学的平均数少1,求x及乙组同学投篮命中次数的方差;
(2)在(1)的条件下,分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名,求这两名同学的投篮命中次数之和为16的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点为A,左焦点为F,过F作垂直于x轴的直线与双曲线相交于B、C两点,若△ABC为锐角三角形,则双曲线的离心率的取值范围为(  )
A.(1,2)B.(1,$\sqrt{2}$)C.($\sqrt{2}$,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知幂函数f(x)=xα(α为常数)的图象过点$P({2,\frac{1}{2}})$,则f(x)的单调递减区间是(  )
A.(-∞,0)B.(-∞,+∞)C.(-∞,0)∪(0,+∞)D.(-∞,0)与(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某研究机构对中学生记忆能力x和识图能力y进行统计分析,得到如下数据:
记忆能力x46810
识图能力y3﹡﹡﹡68
由于某些原因,识图能力的一个数据丢失,但已知识图能力样本平均值是5.5.
(Ⅰ)求丢失的数据;
(Ⅱ)经过分析,知道记忆能力x和识图能力y之间具有线性相关关系,请用最小二乘法求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$;
(III)若某一学生记忆能力值为12,请你预测他的识图能力值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图叶茎图记录了甲、乙两组各6名学生在一次数字测试中的成绩(单位:分),已知甲组数据的众数为84,乙组数据的平均数即为甲组数据的中位数,则x,y的值分别为(  )
A.4,5B.5,4C.4,4D.5,5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{{x}^{2}+1}{{x}^{2}+2kx+1}$(k>0).
(1)若对任意x∈(0,+∞),不等式f(x)≥$\frac{1}{2}$恒成立,求实数k的取值范围;
(2)若对任意的a,b,c∈R+,均存在以$\frac{1}{f(a)}$,$\frac{1}{f(b)}$,$\frac{1}{f(c)}$为三边边长的三角形,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知动点P到点A(-2,0)与点B(2,0)的斜率之积为$-\frac{1}{4}$,点P的轨迹为曲线C.
(Ⅰ)求曲线C的轨迹方程;
(Ⅱ)过点D(1,0)作直线l与曲线C交于P,Q两点,连接PB,QB分别与直线x=3交于M,N两点.若△BPQ和△BMN的面积相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.抛物线y2=4x上横坐标为3的点P到焦点F的距离为4.

查看答案和解析>>

同步练习册答案