精英家教网 > 高中数学 > 题目详情
设抛物线C的方程为y=4x,O为坐标原点,P为抛物线的准线与其对称轴的交点,过焦点F且垂直于x轴的直线交抛物线于M、N两点,若直线PM与ON相交于点Q,则cos∠MQN=
A.B.-C.D.-
D

试题分析:解:如图,∵物线C的方程为y2=4x,O为坐标原点,

P为抛物线的准线与其对称轴的交点,∴P(-1,0),F(1,0),∵焦点F且垂直于x轴的直线交抛物线于M、N两点,∴M(1,2),N(1,-2),∵直线PM过P(-1,0),M(1,2),∴直线PM的方程为 =1,即y=x+1,∵直线NO过点O(0,0),N(1,-2),∴直线ON的方程是,即y=-2x,解方程组y=x+1与y=-2x,解得 ,那么可知,结合向量的夹角公式可知cos∠MQN=-,选D.
点评:本题主要考查直线与圆锥曲线的综合应用能力,综合性强,难度大,是高考的重点,易错点是抛物线知识体系不牢固.本题具体涉及到轨迹方程的求法及直线与抛物线的相关知识,解题时要注意合理地进行等价转化
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


已知椭圆:的一个焦点为且过点.

(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的上下顶点分别为A1A2P是椭圆上异于A1A2的任一点,直线PA1PA2分别交轴于点NM,若直线OT与过点MN的圆G相切,切点为T
证明:线段OT的长为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线的左焦点,作倾斜角为的直线FE交该双曲线右支于点P,若,且则双曲线的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点为,抛物线C:以F2为焦点且与椭圆相交于点,点轴上方,直线与抛物线相切.
(1)求抛物线的方程和点的坐标;
(2)设A,B是抛物线C上两动点,如果直线轴分别交于点. 是以,为腰的等腰三角形,探究直线AB的斜率是否为定值?若是求出这个定值,若不是说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是椭圆的两个焦点,焦距为4.若为椭圆上一点,且的周长为14,则椭圆的离心率为______________

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的方程为,则此双曲线的焦点到渐近线的距离为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设双曲线与椭圆+=1有公共的焦点,且与椭圆相交,它们的交点中一个交点的纵坐标是4,求双曲线的标准方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线的一个焦点作垂直于实轴的弦 ,是另一焦点,若∠,则双曲线的离心率等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线的焦点为,准线与轴的交点为,点上且,则的面积为        

查看答案和解析>>

同步练习册答案