精英家教网 > 高中数学 > 题目详情

在△ABC中,a、b、c分别是角A、B、C的对边,且数学公式=-数学公式
(1)求角B的大小;
(2)若b=数学公式,a+c=4,求a的值.

解:(1)由正弦定理得===2R,得
a=2RsinA,b=2RsinB,c=2RsinC,
代入=-
即2sinAcosB+sinCcosB+cosCcosB=0,
化简得:2sinAcosB+sin(B+C)=0,
∵A+B+C=π,
∴sin(B+C)=sinA,
∴2sinAcosB+sinA=0,
∵sinA≠0,∴cosB=-
又∵角B为三角形的内角,∴B=
(2)将b=,a+c=4,B=
代入余弦定理b2=a2+c2-2accosB,得
13=a2+(4-a)2-2a(4-a)cos
∴a2-4a+3=0,
∴a=1或a=3.
分析:(1)根据正弦定理化简已知的等式,再利用两角和的正弦函数公式及诱导公式化简后,由sinA不为0,即可得到cosB的值,根据B的范围,利用特殊角的三角函数值即可求出B的度数;
(2)利用余弦定理得到b2=a2+c2-2accosB,配方后把b,a+c及cosB的值代入,列出关于a的方程,求出方程的解即可得到a的值.
点评:此题考查了正弦定理,余弦定理以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a<b<c,B=60°,面积为10
3
cm2,周长为20cm,求此三角形的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面积S=
3
3
2
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,若cotA•cotB>1,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)函数的图象是由y=sinx的图象经过如下三步变换得到的:
①将y=sinx的图象整体向左平移
π
6
个单位;
②将①中的图象的纵坐标不变,横坐标缩短为原来的
1
2

③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(1)求f(x)的周期和对称轴;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案