精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数,其中a为常数.
(I)若x=1是函数的一个极值点,求a的值;
(II)若函数在区间(-1,0)上是增函数,求a的取值范围;
(III)若函数,在x=0处取得最大值,求正数a的取值范围.
1)a="2     " (2)a     (3)0<a
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

函数的定义域为,对任意
的解集为
A.(-1,1)B.(-1,+C.(-,-1)D.(-)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设函数的单调减区间是(1,2)
⑴求的解析式;
⑵若对任意的,关于的不等式
时有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理数)(14分) 已知函数
(Ⅰ)设函数F(x)=18f(x)- [h(x)],求F(x)的单调区间与极值;
(Ⅱ)设,解关于x的方程
(Ⅲ)设,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题13分)
已知f(x)=lnx+x2-bx.
(1)若函数f(x)在其定义域内是增函数,求b的取值范围;
(2)当b=-1时,设g(x)=f(x)-2x2,求证函数g(x)只有一个零点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)
已知函数.
(1)求函数在点处的切线方程;
(2)若在区间上恒成立,求的取值范围;
(3)当时,求证:在区间上,满足恒成立的函数有无穷多个.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)若直线过点,且与曲线都相切,
求实数的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(e为自然对数的底数)
(Ⅰ)求函数单调递增区间;(5分)
(Ⅱ)若,求函数在区间[0,]上的最大值和最小值.(5分)
(III)若函数的图象有三个不同的交点,求实数k的取值范围.
(参考数据)(2分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则等于(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案