精英家教网 > 高中数学 > 题目详情

【题目】如图PA⊥平面ABCDABCD是矩形,PA=AB=1AD=,点F是PB的中点,点E在边BC上移动.

1)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;

2)证明:无论点E在边BC的何处,都有PE⊥AF.

【答案】(1)见解析;(2)见解析。

【解析】试题分析:;(1)利用三角形的中位线及线面平行的判定定理解决;
(2)∵PA⊥平面ABCD,∴EB⊥PAEB⊥AB,∴EB⊥平面PAB,又AF平面PAB,
∴AF⊥BE.又PA=AB=1,点FPB的中点,∴AF⊥PB,所以可证出AF⊥平面PBE AF⊥PE易证得

试题解析:

(1)当点EBC的中点时,EF与平面PAC平行.
∵在△PBC中,E、F分别为BC、PB的中点,
∴EF∥PC,又EF平面PAC,而PC平面PAC,
∴EF∥平面PAC.
(2)证明:
∵PA⊥平面ABCD,BE平面ABCD,
∴EB⊥PA,又EB⊥AB,AB∩AP=A,AB,AP平面PAB,
∴EB⊥平面PAB,又AF平面PAB,
∴AF⊥BE.
PA=AB=1,点FPB的中点,
∴AF⊥PB,
又∵PB∩BE=B,PB,BE平面PBE,
∴AF⊥平面PBE.
∵PE平面PBE,
∴AF⊥PE.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数,ω>0,|φ|<)的一个零点与之相邻的对称轴之间的距离为,且fx)有最小值.

(1)求的解析式;

(2)若,求fx)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表,若成绩120分以上(含120分)为优秀.

分数区间

甲班频率

乙班频率

[0,30)

0.1

0.2

[30,60)

0.2

0.2

[60,90)

0.3

0.3

[90,120)

0.2

0.2

[120,150]

0.2

0.1

优秀

不优秀

总计

甲班

乙班

总计

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

(Ⅰ)求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;
(Ⅱ)根据以上数据完成上面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱ABC﹣A1B1C1中,侧棱A1A⊥底面ABC,AC=1,AA1=2,∠BAC=90°,若直线AB1与直线A1C的夹角的余弦值是 ,则棱AB的长度是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD为矩形,PA⊥平面ABCD,点E是棱PD的中点,点F是PC的中点. (Ⅰ)证明:PB∥平面AEC;
(Ⅱ)若底面ABCD为正方形, ,求二面角C﹣AF﹣D大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机变量ξ的分布列如表,其中a,b,c成等差数列.若E(ξ)= ,则D(ξ)=(

ξ

1

2

3

P

a

b

c


A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等腰梯形中(如图1), 边上一点,且沿折起,使平面平面如图2.

(1)证明:平面平面

(2)试在棱上确定一点使截面把几何体分成的两部分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题错误的是 ( )

A. 如果平面平面,那么平面内一定存在直线平行于平面

B. 如果平面不垂直平面,那么平面内一定不存在直线垂直于平面

C. 如果平面平面,平面平面,且,那么

D. 如果平面平面,那么平面内所有直线都垂直于平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点A(2,4),且被平行直线l1:x-y+1=0与l2:x-y-1=0所截的线段中点M在直线x+y-3=0上,求直线l的方程.

查看答案和解析>>

同步练习册答案