精英家教网 > 高中数学 > 题目详情
已知椭圆的两个焦点分别为 离心率e= (1)求椭圆的方程。(2)若CD为过左焦点的弦,求的周长
(1)(2)
本试题主要是考查了椭圆的性质和椭圆方程的求解。
(1)根据椭圆的两个焦点分别为 离心率e=,得到a,b,c的关系式,求解得到椭圆的方程。
(2)由于CD为过左焦点的弦,求的周长,正好分解为两个定义的关系式为4a,因此得到为16
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)已知椭圆的离心率,过右焦点的直线与椭圆相交于两点,当直线的斜率为1时,坐标原点到直线的距离为.
(1)求椭圆的方程
(2)椭圆上是否存在点,使得当直线绕点转到某一位置时,有成立?若存在,求出所有满足条件的点的坐标及对应直线方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是曲线上任意一点, 则点到直线的距离的最小值
是(  )
A.1B. C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,以AB为直径的圆有一内接梯形,且.若双曲线以A、B为焦点,且过C、D两点,则当梯形的周长最大时,双曲线的离心率为(      ).

A、        B、     C、2       D、

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线(为参数)与圆为参数)相切,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知分别是直线上的两个动点,线段的长为的中点.
(1)求动点的轨迹的方程;
(2)过点任意作直线(与轴不垂直),设与(1)中轨迹交于两点,与轴交于点.若,证明:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,设点,坐标原点在以线段为直径的圆上
(Ⅰ)求动点的轨迹C的方程;
(Ⅱ)过点的直线与轨迹C交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C1(a>0),抛物线C2的顶点在原点O,C2的焦点是C1的左焦点F1
(1)求证:C1,C2总有两个不同的交点;
(2)问:是否存在过C2的焦点F1的弦AB,使ΔAOB的面积有最大值或最小值?若存在,求直线AB的方程与SΔAOB的最值,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

顶点在原点,焦点为的抛物线的标准方程为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案