精英家教网 > 高中数学 > 题目详情
若直线(为参数)与圆为参数)相切,则(   )
A.B.C.D.
A
直线方程化为直角坐标系下的方程为,圆的方程化为直角坐标系
下的方程为圆心为。直线与圆相切,即
解得
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

抛物线的焦点为,过点的直线交抛物线于两点.
①若,求直线的斜率;
②设点在线段上运动,原点关于点的对称点为,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在以点为圆心,为直径的半圆中,是半圆弧上一点,,曲线是满足为定值的动点的轨迹,且曲线过点.

(Ⅰ)建立适当的平面直角坐标系,求曲线的方程;
(Ⅱ)设过点的直线l与曲线相交于不同的两点
若△的面积不小于,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了加快经济的发展,某省选择两城市作为龙头带动周边城市的发展,决定在两城市的周边修建城际轻轨,假设为一个单位距离,两城市相距个单位距离,设城际轻轨所在的曲线为,使轻轨上的点到两城市的距离之和为个单位距离,

(1)建立如图的直角坐标系,求城际轻轨所在曲线的方程;
(2)若要在曲线上建一个加油站与一个收费站,使三点在一条直线上,并且个单位距离,求之间的距离有多少个单位距离?
(3)在两城市之间有一条与所在直线成的笔直公路,直线与曲线交于两点,求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点分别为 离心率e= (1)求椭圆的方程。(2)若CD为过左焦点的弦,求的周长

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知圆轴的正半轴相交于点,两点在圆上,在第一象限,在第二象限,的横坐标分别为,则劣弧所对圆 心角的余弦值为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,一个焦点,且长轴长与短轴长的比是.若椭圆在第一象限的一点的横坐标为1,过点作倾斜角互补的两条不同的直线分别交椭圆于另外两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:直线的斜率为定值;
(Ⅲ)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是以为焦点的抛物线是以直线为渐近线,以为一个焦点的双曲线.
(1)求双曲线的标准方程;
(2)若在第一象限内有两个公共点,求的取值范围,并求的最大值;
(3)若的面积满足,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆E的中心在坐标原点O,焦点在x轴上,离心率为,点P(1,)和AB都在椭圆E上,且m(mR).
(1)求椭圆E的方程及直线AB的斜率;
(2)当m=-3时,证明原点O是△PAB的重心,并求直线AB的方程.

查看答案和解析>>

同步练习册答案