精英家教网 > 高中数学 > 题目详情
是以为焦点的抛物线是以直线为渐近线,以为一个焦点的双曲线.
(1)求双曲线的标准方程;
(2)若在第一象限内有两个公共点,求的取值范围,并求的最大值;
(3)若的面积满足,求的值.
(1)(2)当且仅当的最大值为9(3)
(1)注意焦点在y轴上,并且由渐近线方程可得到,可求出a,b值,写出双曲线的标准方程.
(II)将抛物线方程与双曲线方程联立消y之后得到关于x的一元二次方程,然后利用此方程有两个不同的正实根,确定出p的取值范围,然后再把用坐标表示出来,再利用韦达定理转化为关于p的函数,再研究其最值即可.
(III)先把面积表示出来,在(II)的基础上,先求出|AB|的长度,再根据点到直线的距离公式求出高,最后把S表示成关于p的函数,根据可建立p的方程,解出p的值.
(1)设双曲线的标准方程为:则据题得:
双曲线的标准方程为:
(2)将代入到中并整理得:

  又


当且仅当的最大值为9
(3)直线的方程为:
到直线的距离为:

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列中,,且是函数的一个极值点.
(1)求数列的通项公式;
(2)若点的坐标为(1,)(,过函数图像上的点 的切线始终与平行(O 为原点),求证:当 时,不等式对任意都成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

△ABC一边的两个顶点为B(3,0),C(3,0)另两边所在直线的斜率之积为 为常数),则顶点A的轨迹不可能落在下列哪一种曲线上(   )
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线(为参数)与圆为参数)相切,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,设点,坐标原点在以线段为直径的圆上
(Ⅰ)求动点的轨迹C的方程;
(Ⅱ)过点的直线与轨迹C交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)设是单位圆上的任意一点,是过点轴垂直的直线,是直线 轴的交点,点在直线上,且满足. 当点在圆上运动时,记点M的轨迹为曲线
(Ⅰ)求曲线的方程,判断曲线为何种圆锥曲线,并求其焦点坐标;
(Ⅱ)过原点且斜率为的直线交曲线两点,其中在第一象限,它在轴上的射影为点,直线交曲线于另一点. 是否存在,使得对任意的,都有?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

以平面直角坐标系的坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线E的极坐标方程为,曲线F的参数方程为(t为参数)
(1) 求曲线E的直角坐标方程及曲线F的普通方程;
(2)判断两直线的位置关系,若相交,求弦长,若不相交,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

)(本小题满分7分)选修4—4:坐标系与参数方程
在平面直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(cosθ+sinθ)=1.圆的参数方程为(θ为参数,r >0),若直线l与圆C相切,求r的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是椭圆的左、右焦点,是该椭圆短轴的一个端点,直线与椭圆交于点,若成等差数列,则该椭圆的离心率为 .

查看答案和解析>>

同步练习册答案