分析 由三角形的面积公式可得∠APB=∠BPC=∠APC=120°,以AC为底边向△ABC外作正三角形ACQ,可得PA+PB+PC=BQ,再由余弦定理得答案.
解答 解:由三角形的面积公式可得${S}_{△PAB}=\frac{1}{2}PA•PB•sin∠APB$,
${S}_{△PBC}=\frac{1}{2}•PB•PC•sin∠BPC$,${S}_{△PAC}=\frac{1}{2}PA•PC•sin∠APC$.
∴sin∠APB=sin∠BPC=sin∠APC.
则∠APB=∠BPC=∠APC=120°,
以AC为底边向△ABC外作正三角形ACQ,
由题意可得∠ABC=90°,AB=1,AC=2,
∴∠BAC=60°,∠BAQ=120°,
故PA+PB+PC=BQ=$\sqrt{{1}^{2}+{2}^{2}-2×1×2×cos120°}$=$\sqrt{7}$.
故答案为:$\sqrt{7}$.
点评 本题考查正余弦定理解三角形,涉及三角形的面积公式和余弦定理的应用,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | ?x0<0,ln(x0+1)<0 | B. | ?x0≤0,ln(x0+1)≤0 | C. | ?x0>0,ln(x0+1)<0 | D. | ?x0>0,ln(x0+1)≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 使用智能手机人数 | 不使用智能手机人数 | 合计 | |
| 学习成绩优秀人数 | 4 | 8 | 12 |
| 学习成绩不优秀人数 | 16 | 2 | 18 |
| 合计 | 20 | 10 | 30 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -270 | B. | 270 | C. | -90 | D. | 90 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com