精英家教网 > 高中数学 > 题目详情
2.在数列{an}及{bn}中,an+1=an+bn+$\sqrt{{{a}_{n}}^{2}+{{b}_{n}}^{2}}$,bn+1=an+bn-$\sqrt{{{a}_{n}}^{2}+{{b}_{n}}^{2}}$,a1=1,b1=1.设cn=$\frac{1}{{a}_{n}}+\frac{1}{{b}_{n}}$,则数列{cn}的前2017项和为4034.

分析 由已知可得an+1+bn+1=2(an+bn),a1+b1=2,an+1bn+1=$({a}_{n}+{b}_{n})^{2}-({{a}_{n}}^{2}+{{b}_{n}}^{2})=2{a}_{n}{b}_{n}$,即anbn=2n-1.代入cn=$\frac{1}{{a}_{n}}+\frac{1}{{b}_{n}}$,求得数列{cn}为常数数列得答案.

解答 解:∵an+1=an+bn+$\sqrt{{{a}_{n}}^{2}+{{b}_{n}}^{2}}$,bn+1=an+bn-$\sqrt{{{a}_{n}}^{2}+{{b}_{n}}^{2}}$,a1=1,b1=1.
∴an+1+bn+1=2(an+bn),a1+b1=2.
∴an+bn=2n
另一方面:an+1bn+1=$({a}_{n}+{b}_{n})^{2}-({{a}_{n}}^{2}+{{b}_{n}}^{2})=2{a}_{n}{b}_{n}$,
∴anbn=2n-1
∴cn=$\frac{1}{{a}_{n}}+\frac{1}{{b}_{n}}$=$\frac{{a}_{n}+{b}_{n}}{{a}_{n}{b}_{n}}$=$\frac{{2}^{n}}{{2}^{n-1}}=2$,
则数列{cn}的前2017项和S2017=2017×2=4034.
故答案为:4034.

点评 本题考查了数列递推关系、等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,过圆O外一点P作圆O的切线PA,切点为A,连接OP与圆O交于点C,过点C作圆O作AP的垂线,垂足为D,若PA=2$\sqrt{5}$,PC:PO=1:3,求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示是用模拟方法估计圆周率π值的程序框图,m表示估计结果,则图中空白处应填入(  )
A.$m=1-\frac{n}{1000}$B.$m=\frac{n}{1000}$C.$m=1-\frac{n}{250}$D.$m=\frac{n}{250}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“a=3”是“直线ax-2y-1=0与直线6x-4y+1=0平行”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若在△ABC内部的点P满足$\frac{{S}_{△PAB}}{PA•AB}$=$\frac{{S}_{△PBC}}{PB•BC}$=$\frac{{S}_{△PAC}}{PA•AC}$,则PA+PB+PC=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=Asin(2x+φ)-$\frac{1}{2}$(A>0,0<φ<$\frac{π}{2}$)的图象在y轴上的截距为1,且关于直线x=$\frac{π}{12}$对称,若对于任意的x∈[0,$\frac{π}{2}$],都有m2-3m≤f(x),则实数m的取值范围为(  )
A.[1,$\frac{3}{2}$]B.[1,2]C.[$\frac{3}{2}$,2]D.[$\frac{3-\sqrt{3}}{2}$,$\frac{3+\sqrt{3}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,某机械厂要将长6m,宽2m的长方形铁皮ABCD进行裁剪.已知点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF翻折到MNFE处(点C,D分别落在直线BC下方点M,N处,FN交边BC于点P),再沿直线PE裁剪.
(1)当∠EFP=$\frac{π}{4}$时,试判断四边形MNPE的形状,并求其面积;
(2)若使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在Rt△ABC中,∠B=60°过直角顶点A在∠BAC内随机作射线AD,交斜边BC于点D,则BD>BA的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$f(x)=sin({\frac{π}{2}+2x})-5sinx$的最大值为4.

查看答案和解析>>

同步练习册答案