14£®Èçͼ£¬Ä³»úе³§Òª½«³¤6m£¬¿í2mµÄ³¤·½ÐÎÌúƤABCD½øÐвüô£®ÒÑÖªµãFΪADµÄÖе㣬µãEÔÚ±ßBCÉÏ£¬²Ã¼ôʱÏȽ«ËıßÐÎCDFEÑØÖ±ÏßEF·­ÕÛµ½MNFE´¦£¨µãC£¬D·Ö±ðÂäÔÚÖ±ÏßBCÏ·½µãM£¬N´¦£¬FN½»±ßBCÓÚµãP£©£¬ÔÙÑØÖ±ÏßPE²Ã¼ô£®
£¨1£©µ±¡ÏEFP=$\frac{¦Ð}{4}$ʱ£¬ÊÔÅжÏËıßÐÎMNPEµÄÐÎ×´£¬²¢ÇóÆäÃæ»ý£»
£¨2£©Èôʹ²Ã¼ôµÃµ½µÄËıßÐÎMNPEÃæ»ý×î´ó£¬Çë¸ø³ö²Ã¼ô·½°¸£¬²¢ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©µ±¡ÏEFP=$\frac{¦Ð}{4}$ʱ£¬ÓÉÌõ¼þµÃ¡ÏEFP=¡ÏEFD=¡ÏFEP=$\frac{¦Ð}{4}$£®¿ÉµÃFN¡ÍBC£¬ËıßÐÎMNPEΪ¾ØÐΣ®¼´¿ÉµÃ³ö£®
£¨2£©½â·¨Ò»£ºÉè$¡ÏEFD=¦È\;\;£¨0£¼¦È£¼\frac{¦Ð}{2}£©$£¬ÓÉÌõ¼þ£¬Öª¡ÏEFP=¡ÏEFD=¡ÏFEP=¦È£®¿ÉµÃ$PF=\frac{2}{sin£¨¦Ð-2¦È£©}=\frac{2}{sin2¦È}$£¬$NP=NF-PF=3-\frac{2}{sin2¦È}$£¬$ME=3-\frac{2}{tan¦È}$£®ËıßÐÎMNPEÃæ»ýΪ$S=\frac{1}{2}£¨NP+ME£©MN$=$\frac{1}{2}[{£¨3-\frac{2}{sin2¦È}£©+£¨3-\frac{2}{tan¦È}£©}]¡Á2$=$6-\frac{2}{tan¦È}-\frac{2}{sin2¦È}$£¬»¯¼òÀûÓûù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®
½â·¨¶þ£ºÉèBE=tm£¬3£¼t£¼6£¬ÔòME=6-t£®¿ÉµÃPE=PF£¬¼´$\sqrt{£¨3-BP{£©^2}+{2^2}}=t-BP$£®$BP=\frac{{13-{t^2}}}{2£¨3-t£©}$£¬NP=3-T+$\frac{13-{t}^{2}}{2£¨3-t£©}$£¬ËıßÐÎMNPEÃæ»ýΪ$S=\frac{1}{2}£¨NP+ME£©MN$=$\frac{1}{2}[{£¨3-t+\frac{{13-{t^2}}}{2£¨3-t£©}£©+£¨6-t£©}]¡Á2$=$6-[{\frac{3}{2}£¨t-3£©+\frac{2}{t-3}}]$£¬ÀûÓûù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©µ±¡ÏEFP=$\frac{¦Ð}{4}$ʱ£¬ÓÉÌõ¼þµÃ¡ÏEFP=¡ÏEFD=¡ÏFEP=$\frac{¦Ð}{4}$£®
ËùÒÔ¡ÏFPE=$\frac{¦Ð}{2}$£®ËùÒÔFN¡ÍBC£¬
ËıßÐÎMNPEΪ¾ØÐΣ®¡­3·Ö
ËùÒÔËıßÐÎMNPEµÄÃæ»ýS=PN•MN=2m2£®¡­5·Ö
£¨2£©½â·¨Ò»£º
Éè$¡ÏEFD=¦È\;\;£¨0£¼¦È£¼\frac{¦Ð}{2}£©$£¬ÓÉÌõ¼þ£¬Öª¡ÏEFP=¡ÏEFD=¡ÏFEP=¦È£®
ËùÒÔ$PF=\frac{2}{sin£¨¦Ð-2¦È£©}=\frac{2}{sin2¦È}$£¬$NP=NF-PF=3-\frac{2}{sin2¦È}$£¬$ME=3-\frac{2}{tan¦È}$£® ¡­8·Ö
ÓÉ$\left\{\begin{array}{l}3-\frac{2}{sin2¦È}£¾0\\ 3-\frac{2}{tan¦È}£¾0\\ 0£¼¦È£¼\frac{¦Ð}{2}\end{array}\right.$µÃ$\left\{\begin{array}{l}sin2¦È£¾\frac{2}{3}\\ tan¦È£¾\frac{2}{3}£¬\;\;\;\;\;\;\;\;\;£¨*£©\\ 0£¼¦È£¼\frac{¦Ð}{2}.\end{array}\right.$
ËùÒÔËıßÐÎMNPEÃæ»ýΪ$S=\frac{1}{2}£¨NP+ME£©MN$=$\frac{1}{2}[{£¨3-\frac{2}{sin2¦È}£©+£¨3-\frac{2}{tan¦È}£©}]¡Á2$=$6-\frac{2}{tan¦È}-\frac{2}{sin2¦È}$=$6-\frac{2}{tan¦È}-\frac{{2£¨{{sin}^2}¦È+{{cos}^2}¦È£©}}{2sin¦Ècos¦È}$=$6-£¨tan¦È+\frac{3}{tan¦È}£©$¡­12·Ö
$¡Ü6-2\sqrt{tan¦È\frac{3}{tan¦È}}=6-2\sqrt{3}$£®
µ±ÇÒ½öµ±$tan¦È=\frac{3}{tan¦È}$£¬¼´$tan¦È=\sqrt{3}\;£¬¦È=\frac{¦Ð}{3}$ʱȡ¡°=¡±£®¡­14·Ö
´Ëʱ£¬£¨*£©³ÉÁ¢£®
´ð£ºµ±$¡ÏEFD=\frac{¦Ð}{3}$ʱ£¬ÑØÖ±ÏßPE²Ã¼ô£¬ËıßÐÎMNPEÃæ»ý×î´ó£¬
×î´óֵΪ$6-2\sqrt{3}$m2£®  ¡­16·Ö
½â·¨¶þ£º
ÉèBE=tm£¬3£¼t£¼6£¬ÔòME=6-t£®
ÒòΪ¡ÏEFP=¡ÏEFD=¡ÏFEP£¬ËùÒÔPE=PF£¬¼´$\sqrt{£¨3-BP{£©^2}+{2^2}}=t-BP$£®
ËùÒÔ$BP=\frac{{13-{t^2}}}{2£¨3-t£©}$£¬$NP=3-PF=3-PE=3-£¨t-BP£©=3-t+\frac{{13-{t^2}}}{2£¨3-t£©}$£®  ¡­8·Ö
ÓÉ$\left\{\begin{array}{l}3£¼t£¼6\\ \frac{{13-{t^2}}}{2£¨3-t£©}£¾0\\ 3-t+\frac{{13-{t^2}}}{2£¨3-t£©}£¾0\end{array}\right.$µÃ$\left\{\begin{array}{l}3£¼t£¼6\\ t£¾\sqrt{13}£¬\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;£¨*£©\\{t^2}-12t+31£¼0.\end{array}\right.$
ËùÒÔËıßÐÎMNPEÃæ»ýΪ$S=\frac{1}{2}£¨NP+ME£©MN$=$\frac{1}{2}[{£¨3-t+\frac{{13-{t^2}}}{2£¨3-t£©}£©+£¨6-t£©}]¡Á2$=$\frac{{3{t^2}-30t+67}}{2£¨3-t£©}$¡­12·Ö
=$6-[{\frac{3}{2}£¨t-3£©+\frac{2}{t-3}}]$$¡Ü6-2\sqrt{3}$£®
µ±ÇÒ½öµ±$\frac{3}{2}£¨t-3£©=\frac{2}{t-3}$£¬¼´$t=3+\sqrt{\frac{4}{3}}\;=3+\frac{{2\sqrt{3}}}{3}$ʱȡ¡°=¡±£® ¡­14·Ö
´Ëʱ£¬£¨*£©³ÉÁ¢£®
´ð£ºµ±µãE¾àBµã$3+\frac{{2\sqrt{3}}}{3}$mʱ£¬ÑØÖ±ÏßPE²Ã¼ô£¬ËıßÐÎMNPEÃæ»ý×î´ó£¬
×î´óֵΪ$6-2\sqrt{3}$m2£®  ¡­16·Ö£®

µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄÐÔÖÊ¡¢¾ØÐεÄÃæ»ý¼ÆË㹫ʽ¡¢»ù±¾²»µÈʽµÄÐÔÖÊ¡¢Èý½Çº¯ÊýµÄµ¥µ÷ÐÔÓ¦ÓëÇóÖµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èçͼ£¬ÔÚ¶àÃæÌåABCDEFÖУ¬ËıßÐÎABCDÊDZ߳¤Îª3µÄÕý·½ÐΣ¬EF¡ÎAB£¬EF=$\frac{3}{2}$£¬ÇÒµãEµ½Æ½ÃæABCDµÄ¾àÀëΪ2£¬Ôò¸Ã¶àÃæÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{9}{2}$B£®5C£®6D£®$\frac{15}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÃüÌâ¼×£º¶ÔÈÎÒâʵÊýx¡ÊR£¬²»µÈʽ$\frac{{a{x^2}-ax+3}}{{{x^2}-2x+2}}¡Ý0$ºã³ÉÁ¢£»ÃüÌâÒÒ£ºÒÑÖªx£¬y¡ÊR*Âú×ãx+y=xy+3=0£¬ÇÒa¡Üxyºã³ÉÁ¢£®
£¨1£©·Ö±ðÇó³ö¼×¡¢ÒÒÎªÕæÃüÌâʱ£¬ÊµÊýaµÄȡֵ·¶Î§£»
£¨2£©ÇóʵÊýaµÄȡֵ·¶Î§£¬Ê¹ÃüÌâ¼×¡¢ÒÒÖÐÓÐÇÒÖ»ÓÐÒ»¸öÕæÃüÌ⣮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÔÚÊýÁÐ{an}¼°{bn}ÖУ¬an+1=an+bn+$\sqrt{{{a}_{n}}^{2}+{{b}_{n}}^{2}}$£¬bn+1=an+bn-$\sqrt{{{a}_{n}}^{2}+{{b}_{n}}^{2}}$£¬a1=1£¬b1=1£®Éècn=$\frac{1}{{a}_{n}}+\frac{1}{{b}_{n}}$£¬ÔòÊýÁÐ{cn}µÄǰ2017ÏîºÍΪ4034£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªµãA£¨1£¬0£©£¬B£¨1£¬$\sqrt{3}$£©£¬µãCÔÚµÚ¶þÏóÏÞ£¬ÇÒ¡ÏAOC=150¡ã£¬$\overrightarrow{OC}$=-4$\overrightarrow{OA}$+¦Ë$\overrightarrow{OB}$£¬Ôò¦Ë=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÍÖÔ²EµÄ½¹µãÔÚxÖáÉÏ£¬ÖÐÐÄÔÚÔ­µã£¬Æä¶ÌÖáÉϵÄÁ½¸ö¶¥µãºÍÁ½¸ö½¹µãǡΪ±ß³¤ÊÇ2µÄÕý·½ÐεĶ¥µã£¬ÔòÍÖÔ²EµÄ±ê×¼·½³ÌΪ£¨¡¡¡¡£©
A£®$\frac{x^2}{2}+\frac{y^2}{{\sqrt{2}}}=1$B£®$\frac{x^2}{2}+{y^2}=1$C£®$\frac{x^2}{4}+\frac{y^2}{2}=1$D£®$\frac{y^2}{4}+\frac{x^2}{2}=1$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Ä³Ñо¿ÐÍѧϰС×éµ÷²éÑо¿¡±ÖÐѧÉúʹÓÃÖÇÄÜÊÖ»ú¶ÔѧϰµÄÓ°Ï족£®²¿·Öͳ¼ÆÊý¾ÝÈç±í£º
ʹÓÃÖÇÄÜÊÖ»úÈËÊý²»Ê¹ÓÃÖÇÄÜÊÖ»úÈËÊýºÏ¼Æ
ѧϰ³É¼¨ÓÅÐãÈËÊý4812
ѧϰ³É¼¨²»ÓÅÐãÈËÊý16218
ºÏ¼Æ201030
²Î¿¼Êý¾Ý£º
P£¨K2¡Ýk0£©0.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
²Î¿¼¹«Ê½£º${K^2}=\frac{{n{{£¨{ad-bc}£©}^2}}}{{£¨{a+b}£©£¨{c+d}£©£¨{a+c}£©£¨{b+d}£©}}$£¬ÆäÖÐn=a+b+c+d
£¨¢ñ£©ÊÔ¸ù¾ÝÒÔÉÏÊý¾Ý£¬ÔËÓöÀÁ¢ÐÔ¼ìÑé˼Ï룬ָ³öÓжà´ó°ÑÎÕÈÏΪÖÐѧÉúʹÓÃÖÇÄÜÊÖ»ú¶ÔѧϰÓÐÓ°Ï죿
£¨¢ò£©Ñо¿Ð¡×齫¸ÃÑù±¾ÖÐʹÓÃÖÇÄÜÊÖ»úÇҳɼ¨ÓÅÐãµÄ4λͬѧ¼ÇΪA×飬²»Ê¹ÓÃÖÇÄÜÊÖ»úÇҳɼ¨ÓÅÐãµÄ8λͬѧ¼ÇΪB×飬¼Æ»®´ÓA×éÍÆÑ¡µÄ2È˺ÍB×éÍÆÑ¡µÄ3ÈËÖУ¬Ëæ»úÌôÑ¡Á½ÈËÔÚѧУÉýÆìÒÇʽÉÏ×÷¡°¹úÆìϽ²»°¡±·ÖÏíѧϰ¾­Ñ飮ÇóÌôÑ¡µÄÁ½ÈËÇ¡ºÃ·Ö±ðÀ´×ÔA¡¢BÁ½×éµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªº¯Êý$f£¨x£©=sin£¨{¦Øx+¦Õ}£©£¨{¦Ø£¾0£¬0£¼¦Õ£¼\frac{¦Ð}{2}}£©$µÄͼÏó¾­¹ýµã$£¨{0£¬\frac{1}{2}}£©$£¬ÇÒÏàÁÚÁ½Ìõ¶Ô³ÆÖáµÄ¾àÀëΪ$\frac{¦Ð}{2}$£¬Ôòº¯Êýf£¨x£©ÔÚ[0£¬¦Ð]Éϵĵ¥µ÷µÝ¼õÇø¼äΪ[$\frac{¦Ð}{6}$£¬$\frac{2¦Ð}{3}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªº¯Êý$f£¨x£©={x^2}-2xsin£¨\frac{¦Ð}{2}x£©+1$µÄÁ½¸öÁãµã·Ö±ðΪm¡¢n£¨m£¼n£©£¬Ôò$\int_m^n{\sqrt{1-{x^2}}}dx$=$\frac{¦Ð}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸