精英家教网 > 高中数学 > 题目详情
5.已知命题甲:对任意实数x∈R,不等式$\frac{{a{x^2}-ax+3}}{{{x^2}-2x+2}}≥0$恒成立;命题乙:已知x,y∈R*满足x+y=xy+3=0,且a≤xy恒成立.
(1)分别求出甲、乙为真命题时,实数a的取值范围;
(2)求实数a的取值范围,使命题甲、乙中有且只有一个真命题.

分析 (1)由x2-2x+2=(x-1)2+1>0恒成立,可得$\frac{{a{x^2}-ax+3}}{{{x^2}-2x+2}}≥0$恒成立?ax2-ax+3≥0恒成立,对a分类可得满足条件的a的范围;由正数x,y,满足x+y≥2$\sqrt{xy}$,xy=x+y+3,利用基本不等式转化为关于$\sqrt{xy}$的不等式求得$\sqrt{xy}$的范围,进一步得到xy的最小值可得满足条件的a的范围;
(2)分别由甲为真命题,乙为假命题及甲为假命题,乙为真命题,结合补集、交集运算求得答案.

解答 解:(1)∵x2-2x+2=(x-1)2+1>0恒成立,
∴命题甲:对任意实数x∈R,不等式$\frac{{a{x^2}-ax+3}}{{{x^2}-2x+2}}≥0$恒成立?ax2-ax+3≥0恒成立,
当a=0时,3>0恒成立;
当a≠0时,必有$\left\{\begin{array}{l}{a>0}\\{△={a}^{2}-12a≤0}\end{array}\right.$,解得:0<a≤12,
综上,甲为真命题时,实数a的取值范围为[0,12];
∵正数x,y,满足x+y≥2$\sqrt{xy}$,xy=x+y+3,
∴xy-2$\sqrt{xy}$-3≥0,
∴$\sqrt{xy}$≥3或$\sqrt{xy}$≤-1(舍去),
∴xy≥9,要使xy≥a恒成立,则a≤9.
∴a的取值范围为(-∞,9].
(2)若甲为真命题,则乙为假命题,则a∈[0,12]∩(9,+∞)=(9,12];
若甲为假命题,则乙为真命题,则a∈{a|a<0或a>12}∩{a|a≤9}=(-∞,9].
综上,使命题甲、乙中有且只有一个真命题的a的范围为(-∞,12].

点评 本题考查命题的真假判断与应用,考查了恒成立问题的求法,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知集合U={1,2,3,4,5},A={3,4},B={1,4,5},则A∪(∁UB)={2,3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“x>0”是“(x-2)(x-4)<0”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示是用模拟方法估计圆周率π值的程序框图,m表示估计结果,则图中空白处应填入(  )
A.$m=1-\frac{n}{1000}$B.$m=\frac{n}{1000}$C.$m=1-\frac{n}{250}$D.$m=\frac{n}{250}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点P为圆x2+y2=4上一动点,过点P作x轴的垂线,垂足为Q(P与Q不重合),M为线段PQ中点.
(1)求点M的轨迹C的方程;
(2)直线y=kx交(1)中轨迹C于A,B两点,当直线MA,MB斜率KMA,KMB都存在时,求证:KMA•KMB为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“a=3”是“直线ax-2y-1=0与直线6x-4y+1=0平行”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若在△ABC内部的点P满足$\frac{{S}_{△PAB}}{PA•AB}$=$\frac{{S}_{△PBC}}{PB•BC}$=$\frac{{S}_{△PAC}}{PA•AC}$,则PA+PB+PC=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,某机械厂要将长6m,宽2m的长方形铁皮ABCD进行裁剪.已知点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF翻折到MNFE处(点C,D分别落在直线BC下方点M,N处,FN交边BC于点P),再沿直线PE裁剪.
(1)当∠EFP=$\frac{π}{4}$时,试判断四边形MNPE的形状,并求其面积;
(2)若使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知直线l将圆C:x2+y2+x-2y+1=0平分,且与直线x+2y+3=0垂直,则l的方程为2x-y+2=0.

查看答案和解析>>

同步练习册答案