精英家教网 > 高中数学 > 题目详情
11.已知集合U={1,2,3,4,5},A={3,4},B={1,4,5},则A∪(∁UB)={2,3,4}.

分析 先求出CUB={2,3},再利用并集定义能求出A∪(∁UB).

解答 解:∵集合U={1,2,3,4,5},A={3,4},B={1,4,5},
∴CUB={2,3},
A∪(∁UB)={2,3,4}.
故答案为:{2,3,4}.

点评 本题考查补集、并集的求法,是基础题,解题时要认真审题,注意补集、并集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.S=$\frac{1}{1×3}+\frac{1}{2×4}+\frac{1}{3×5}+…+\frac{1}{20×22}$=$\frac{325}{462}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)=loga(2-ax)(a>0,a≠1).
(1)当a=3时,求函数f(x)的定义域;
(2)若g(x)=f(x)-loga(2+ax),判断g(x)的奇偶性;
(3)是否存在实数a,使函数f(x)在[2,3]递增,并且最大值为1,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$e=\frac{1}{2}$,且与y轴的正半轴的交点为$(0,2\sqrt{3})$,抛物线C2的顶点在原点且焦点为椭圆C1的左焦点.
(1)求椭圆C1与抛物线C2的标准方程;
(2)过(1,0)的两条相互垂直直线与抛物线C2有四个交点,求这四个点围成四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图所示正方形O'A'B'C'的边长为2cm,它是一个水平放置的一个平面图形的直观图,则原图形的周长是16cm,面积是$8\sqrt{2}c{m^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设Sn为等差数列{an}的前n项和,若a3=4,S9-S6=27,则S10=65.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在ABC-A1B1C1中,所有棱长均相等,且∠ABB1=60°,D为AC的中点,求证:
(1)B1C∥平面A1BD;
(2)AB⊥B1C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在多面体ABCDEF中,四边形ABCD是边长为3的正方形,EF∥AB,EF=$\frac{3}{2}$,且点E到平面ABCD的距离为2,则该多面体的体积为(  )
A.$\frac{9}{2}$B.5C.6D.$\frac{15}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题甲:对任意实数x∈R,不等式$\frac{{a{x^2}-ax+3}}{{{x^2}-2x+2}}≥0$恒成立;命题乙:已知x,y∈R*满足x+y=xy+3=0,且a≤xy恒成立.
(1)分别求出甲、乙为真命题时,实数a的取值范围;
(2)求实数a的取值范围,使命题甲、乙中有且只有一个真命题.

查看答案和解析>>

同步练习册答案