精英家教网 > 高中数学 > 题目详情
9.如图所示是用模拟方法估计圆周率π值的程序框图,m表示估计结果,则图中空白处应填入(  )
A.$m=1-\frac{n}{1000}$B.$m=\frac{n}{1000}$C.$m=1-\frac{n}{250}$D.$m=\frac{n}{250}$

分析 由题意以及框图的作用,直接推断空白框内应填入的表达式.

解答 解:由题意以及程序框图可知,
用模拟方法估计圆周率π的程序框图,n是圆周内的点的次数,当i大于1000时,
圆周内的点的次数为4n,总试验次数为1000,
所以要求的概率 $\frac{4n}{1000}$,
所以空白框内应填入的表达式是m=$\frac{4n}{1000}$=$\frac{n}{250}$.
故选:D.

点评 本题考查程序框图的作用,考查模拟方法估计圆周率π的方法,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$e=\frac{1}{2}$,且与y轴的正半轴的交点为$(0,2\sqrt{3})$,抛物线C2的顶点在原点且焦点为椭圆C1的左焦点.
(1)求椭圆C1与抛物线C2的标准方程;
(2)过(1,0)的两条相互垂直直线与抛物线C2有四个交点,求这四个点围成四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在多面体ABCDEF中,四边形ABCD是边长为3的正方形,EF∥AB,EF=$\frac{3}{2}$,且点E到平面ABCD的距离为2,则该多面体的体积为(  )
A.$\frac{9}{2}$B.5C.6D.$\frac{15}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在正方体ABCD-A1B1C1D1各条棱所在的直线中,与直线AA1垂直的条数共有8条.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题?x>0,ln(x+1)>0的否定为(  )
A.?x0<0,ln(x0+1)<0B.?x0≤0,ln(x0+1)≤0C.?x0>0,ln(x0+1)<0D.?x0>0,ln(x0+1)≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校收集该校学生从家到学校的时间后,制作成如下的频率分布直方图:
(1)求a的值及该校学生从家到校的平均时间;
(2)若该校因学生寝室不足,只能容纳全校60%的学生住校,出于安全角度考虑,从家到校时间较长的学生才住校,请问从家到校时间多少分钟以上开始住校.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题甲:对任意实数x∈R,不等式$\frac{{a{x^2}-ax+3}}{{{x^2}-2x+2}}≥0$恒成立;命题乙:已知x,y∈R*满足x+y=xy+3=0,且a≤xy恒成立.
(1)分别求出甲、乙为真命题时,实数a的取值范围;
(2)求实数a的取值范围,使命题甲、乙中有且只有一个真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在数列{an}及{bn}中,an+1=an+bn+$\sqrt{{{a}_{n}}^{2}+{{b}_{n}}^{2}}$,bn+1=an+bn-$\sqrt{{{a}_{n}}^{2}+{{b}_{n}}^{2}}$,a1=1,b1=1.设cn=$\frac{1}{{a}_{n}}+\frac{1}{{b}_{n}}$,则数列{cn}的前2017项和为4034.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)=sin({ωx+φ})({ω>0,0<φ<\frac{π}{2}})$的图象经过点$({0,\frac{1}{2}})$,且相邻两条对称轴的距离为$\frac{π}{2}$,则函数f(x)在[0,π]上的单调递减区间为[$\frac{π}{6}$,$\frac{2π}{3}$].

查看答案和解析>>

同步练习册答案