精英家教网 > 高中数学 > 题目详情
14.某校收集该校学生从家到学校的时间后,制作成如下的频率分布直方图:
(1)求a的值及该校学生从家到校的平均时间;
(2)若该校因学生寝室不足,只能容纳全校60%的学生住校,出于安全角度考虑,从家到校时间较长的学生才住校,请问从家到校时间多少分钟以上开始住校.

分析 (1)由频率和为1,列方程求出a的值,再计算平均到校时间;
(2)计算不住校人数的频率值,求出此时对应的到校时间即可.

解答 解:(1)由频率和为1,得
(0.009+0.020+0.011+a+0.003+0.002)×20=1,
解得a=0.005;
所以平均到校时间为
$\overline x=({10×0.009+30×0.020+50×0.011+70×0.005+90×0.003+110×0.002})×20=41.6$(分钟)
(2)住校人数占总数60%,则不住校人数占总数40%,
列式计算:x0=40-${x_0}=40-\frac{0.009×20+0.020×20-0.4}{0.020×20}×20=31$(分钟),
所以从家到校时间为31分钟以上开始住校.

点评 本题考查了频率分布直方图的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知y=f(x)在定义域R上为减函数,且f(1-a)<f(2a-5),则a的取值范围是(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,三棱柱ABC-A1B1C1的侧棱垂直于底面,其高为6cm,底面三角形的边长分别为3cm,4cm,5cm,以上、下底面的内切圆为底面,挖去一个圆柱,求剩余部分几何体的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD,底面ABCD为矩形,AB=PA=$\sqrt{3}$,AD=2,PB=$\sqrt{6}$,E为PB中点,且AE⊥BC.
(1)求证:PA⊥平面ABCD;
(2)若M,N分别为棱PC,PD中点,求四棱锥B-MCDN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示是用模拟方法估计圆周率π值的程序框图,m表示估计结果,则图中空白处应填入(  )
A.$m=1-\frac{n}{1000}$B.$m=\frac{n}{1000}$C.$m=1-\frac{n}{250}$D.$m=\frac{n}{250}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某种汽车购车时的费用为10万元,每年保险、养路费、汽油费共1.5万元,如果汽车的维修费第1年0.1万元,从第2年起,每年比上一年多0.2万元,这种汽车最多使用10年报废最合算(即平均每年费用最少).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“a=3”是“直线ax-2y-1=0与直线6x-4y+1=0平行”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=Asin(2x+φ)-$\frac{1}{2}$(A>0,0<φ<$\frac{π}{2}$)的图象在y轴上的截距为1,且关于直线x=$\frac{π}{12}$对称,若对于任意的x∈[0,$\frac{π}{2}$],都有m2-3m≤f(x),则实数m的取值范围为(  )
A.[1,$\frac{3}{2}$]B.[1,2]C.[$\frac{3}{2}$,2]D.[$\frac{3-\sqrt{3}}{2}$,$\frac{3+\sqrt{3}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在复平面内,复数$z=\frac{-1+i}{2-i}$(i为虚数单位)的共轭复数对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案