精英家教网 > 高中数学 > 题目详情
已知数列{an},{bn}满足a1=1,a2=2,b1=2,且对任意的正整数i,j,k,l,当i+j=k+l时,都有ai+bj=ak+bl,则的值是( )
A.2012
B.2013
C.2014
D.2015
【答案】分析:由已知可得,==a1+b2013,要求原式的值,转化为求解b2013,根据已知可先去b2,b3,b4,据此规律可求
解答:解:∵i+j=k+l时,都有ai+bj=ak+bl
=
=×2013
=a1+b2013
∵a1=1,a2=2,b1=2,
∴a1+b2=a2+b1
∴b2=3
同理可得,b3=a2+b2-a1=4
b4=a2+b3-a1=5

∴b2013=2014
=a1+b2013=2015
=2015
故选D
点评:本题 主要考查了数列的求和,解题的关键是发现试题中数列的项的规律
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1<0,
an+1
an
=
1
2
,则数列{an}是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,试证明数列{bn}为等比数列;
(II)求数列{an}的通项公式an与前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+3n+1,则数列{an}的通项公式为
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an=
2n
2n

查看答案和解析>>

同步练习册答案